
The fltpoint package∗

Eckhart Guthöhrlein†

Printed November 12, 2004

Abstract

This package provides commands for simple arithmetic with generic TEX.
At the moment, there is support for the basic operations addition, subtrac-
tion, multiplication and division as well as for rounding numbers to a given
precision.

1 Introduction

The need for calculations inside TEX was encountered when working on some
macros to convert positions on a linear scale into angle values, since integer values
proved not to be sufficiently exact. Although the capabilities of this package are
currently rather limited, they may be of some use if you do not need more than
the provided functions. The rccol package may serve as an example application;
it uses the rounding facilities of this package.

2 User interface

The user commands are divided into two categories: the normal and the register
commands. Each command is available in those two variants, as decribed below.
At first, we have to agree about the syntax for floating point numbers.

2.1 Syntax of floating point numbers

In the syntax descriptions below, 〈fp number〉 will be used to denote a number
according to the following syntax.

〈fp number〉 := 〈opt signs〉〈opt digits〉〈opt dot〉〈opt digits〉

〈opt signs〉 may be any number of ‘+’ and/or ‘-’ characters, where each ‘-’
toggles the sign of the number. 〈opt digits〉 may be any number of charac-
ters ‘0’. . . ‘9’, and 〈opt dot〉 is the optional decimal sign. For example, the fol-
lowing inputs for 〈fp number〉 are valid, resulting into the specified numbers.
‘100’ → 100, ‘010,98700’ → 10,987, ‘-,99’ → −0,99, ‘-+-+0001,’ → 1,
‘’ → 0, ‘---,50’ → −0,5. As you can see, leading and trailing zeros are re-
moved as far as possible, and an ‘empty number’ (omitting anything optional) is
understood as zero.

∗This file has version number v1.1b dated 2004/11/12.
†Send comments or bug-reports to the author via e-mail <e w g@web.de>.

1

There is no syntax checking, so if you do not obey the rules above, you are likely
to encounter strange error messages, as well as everything might work properly
in some cases. Of course, it is also possible to use a macro as 〈fp number〉 if it
expands to a string satisfying the syntax rules.

2.2 Standard operations

The standard commands for binary operations have the following common syntax:\fpAdd

\fpSub

\fpMul

\fpDiv

\fp〈bOp〉{〈command sequence〉}{〈fp number〉}{〈fp number〉}.

This will perform the operation specified by 〈bOp〉 with the two given numbers,
saving the result in 〈command sequence〉. Possibilities for 〈bOp〉 are ‘Add’, ‘Sub’,
‘Mul’ and ‘Div’, specifying addition, subtraction, multiplication, and division. Ex-
ample:

\fpAdd{\exmplsum}{100,0}{-99,1}
\fpMul{\exmplprod}{5}{\exmplsum}

After this, the results of the computations will be stored in the macros \exmplsum
and \exmplprod, expanding to 0,9 and 4,5.

Similar to the binary operations, the unary operations share the common syn-\fpNeg

\fpAbs tax

\fp〈uOp〉{〈command sequence〉}{〈fp number〉}.

Possibilities for 〈uOp〉 are ‘Abs’ and ‘Neg’, meaning absolute amount and negation.
With \fpRound{〈command sequence〉}{〈fp number〉}{〈precision〉}, a number\fpRound

can be rounded to the desired precision (a power of ten). The result is saved in
〈command sequence〉 as usual.

2.3 Register operations

You may use register variants of all operations, which means that you perform the
operation on a register which contains a number. A register is referred to using
its name; the name may contain any characters including digits.

Registers are initialized by assigning them values, using \fpRegSet. They can\fpRegSet

\fpRegGet be read out into command sequences using \fpRegGet.

\fpRegSet{〈reg name〉}{〈fp number〉}
\fpRegGet{〈reg name〉}{〈command sequence〉}

The binary operations need two register names. After execution, the first\fpRegAdd

\fpRegSub

\fpRegMul

\fpRegDiv

register will hold the result of the specified computation, performed with its former
value and the value of the second register.

\fp〈bOp〉{〈reg name 1 〉}{〈reg name 2 〉}

Consequently, the unary operations only need the name of the register.\fpRegAbs

\fpRegNeg
\fp〈uOp〉{〈reg name〉}

Rounding of registers is also possible.\fpRegRound

\fpRegRound{〈reg name〉}{〈precision〉}

2

Furthermore, there is one binary operation only available for registers, this is\fpRegCopy

\fpRegCopy which assigns the value of 〈reg name 2 〉 to register 〈reg name 1 〉.
For example, consider the following statements.

\fpRegSet{test1}{36} \fpRegSet{test2}{-3}
\fpRegDiv{test1}{test2} \fpRegMul{test1}{test1}
\fpRegGet{test1}{\fpresult}

After this, test1 will hold the value 144, which \fpresult will expand to.

2.4 Configuration and Parameters

The macro \fpAccuracy takes one argument (a number), determining the number\fpAccuracy

of digits after the decimal sign, i. e., the accuracy of the computations. The default
value is five. At the moment, the name promises too much. The command only
affects \fpDiv and \fpRegDiv.

With \fpDecimalSign{〈character〉} you can chose any character for use as\fpDecimalSign

the decimal sign. Normally, this will be either a point or a comma; the default
is a comma. You can furthermore use the package options comma or point. The
support for options like english or german has been removed. It will not be added
again, and there will be no detection of packages like babel or german. In my
view, a comma is the better choice regardless of the language in question (and it
is the iso standard). On the other hand, many people think that a point should
be used even in German texts. So, you have to make an explicit decision.

3 Final Remarks

After the first release, I intended to include the features listed below in the near
future. Unfortunately, I didn’t have time to do so, and maybe I will never have,
since I am currently not interested in extending this package. If I continued the
development some day, the first extensions might be what is listed here.

• Extend syntax to support numbers like 1,7E−1 or 2,765 · 105 in input and
output.

• Formatted, customizable output.

• User access to the comparison of registers.

• A better concept for chosing the accuracy of the computations.

• More operations like ex,
√

x, sin x, lnx. . .

Some users have pointed out that the terminus ‘floating-point’ is not strictly
correct for what is provided by the package. Alas! I happily stick to the package
name.

If you encounter needs not satisfied by this package, you may wait for the
unlikely event of an extension from my part, or you can have a look at the following
packages and see if they do what you want:

• fp by Michael Mehlich for calculations,

• numprint by Harald Harders for formatted printing of numbers.

Finally, the license of this package is LPPL, so feel free to do it yourself.

3

4 Implementation

4.1 General ideas

The main idea was to represent numbers internally by storing their digits in an
array/record-like construction (to be referred to as an array or as a register from
now on) whose numbering reflects the decimal position factor of the digit, with
some information about the range of the numbering and the sign of the number.
An array consists of a couple of command sequences, sharing a common name
followed by an element number. E. g., ‘120.3’ means 1·102+2·101+0·100+3·10−1.
So, if the number is to be stored in the array \exmpl, the command sequences
\exmpl@2, \exmpl@1, \exmpl@0 and \exmpl@-1 will be defined as ‘1’, ‘2’, ‘0’ and
‘3’, respectively. The sign information ‘+’ will be stored in \exmpl@sig. \exmpl@ul
(‘upper limit’) will be ‘2’, \exmpl@ll (‘lower limit’) will be ‘-1’.

The computations are performed as you do it with paper and pencil. E. g., for
an addition, all corresponding digits are summed, taking over anything exceeding
ten to the next pair of digits. Thus, there is no limit to the range of numbers or to
the number of digits after the decimal sign, except TEX’s memory and, probably
the limiting factor, your patience.

Initially, the computations were not performed inside of groups, and side-effects
were avoided using more counters and constructions like \xloop etc. This may
make more efficient use of TEX, as far as speed and save stack usage is concerned,
but I think that further extensions will be much simpler now without the need
to worry about possible side-effects and the surprising result when, once again,
something happens you simply did not think of. Furthermore, this provides a
simple mechanism of removing temporary stuff from the memory.

But now, let’s reveal the code. . .

4.2 Driver file

The driver file can be generated from fltpoint.dtx and then be used to produce
the documentation (if you don’t like to run LATEX directly over the dtx-file).
1 〈∗deccomma〉
2 \mathchardef\CommaOrdinary="013B

3 \mathchardef\CommaPunct ="613B

4 \mathcode‘,="8000

5 {\catcode‘\,=\active

6 \gdef ,{\obeyspaces\futurelet\next\CommaCheck}}

7 \def\CommaCheck{\if\space\next\CommaPunct\else\CommaOrdinary\fi}

8 〈/deccomma〉
9 〈∗driver〉

10 \documentclass{ltxdoc}

11 \usepackage{deccomma,fltpoint}

12 %\OnlyDescription

13 \AlsoImplementation

14 \EnableCrossrefs % disable if index is ready

15 \CodelineIndex

16 \RecordChanges

17 %\DisableCrossrefs

18 \newcommand{\fpexample}[1]{%

19 \fpRegSet{fptemp}{#1}%

20 \fpRegGet{fptemp}{\fptemp}%

4

21 $\mbox{\tt‘#1’}\rightarrow\fptemp$}

22 \begin{document}

23 \DocInput{fltpoint.dtx}

24 \end{document}

25 〈/driver〉

4.3 LATEX package definitions

If used as a LATEX package, the usual LATEX preliminaries and some option decla-
rations are necessary.
26 〈∗package〉
27 \NeedsTeXFormat{LaTeX2e}

28 \ProvidesPackage{fltpoint}[2004/11/12 v1.1b floating point arithmetic]

29 \DeclareOption{comma}{\AtBeginDocument{\fpDecimalSign,}}

30 \DeclareOption{point}{\AtBeginDocument{\fpDecimalSign.}}

31 \ProcessOptions*\relax

32 \input{fltpoint}

33 〈/package〉

4.4 Private letters

\atcatcode ‘@’ is used for private command sequences. Its catcode is saved in \atcatcode to
be restored just before \endinput.
34 \edef\atcatcode{\the\catcode‘\@}

35 \catcode‘\@=11

4.5 LATEX or not?

Check for LATEX, otherwise provide the \@ifnextchar mechanism copied from the
LATEX source, see there for explanation.
36 \ifx\documentclass\relax

37 \long\def\@ifnextchar#1#2#3{%

38 \let\reserved@d=#1%

39 \def\reserved@a{#2}%

40 \def\reserved@b{#3}%

41 \futurelet\@let@token\@ifnch}

42 \def\@ifnch{%

43 \ifx\@let@token\@sptoken

44 \let\reserved@c\@xifnch

45 \else

46 \ifx\@let@token\reserved@d

47 \let\reserved@c\reserved@a

48 \else

49 \let\reserved@c\reserved@b

50 \fi

51 \fi

52 \reserved@c}

53 \def\:{\let\@sptoken= } \:

54 \def\:{\@xifnch} \expandafter\def\: {\futurelet\@let@token\@ifnch}

55 \fi

5

4.6 Additional loop structures

\iloop

\xloop

To be able to nest loop structures without the need for hiding the inner loop(s) in
grouped blocks, the constructions \iloop...\irepeat and \xloop...\xrepeat
are defined analogously to Plain TEX’s \loop...\repeat. \iloop will be used
‘internally’ by macros which are to be used in ordinary \loops or in \xloops.
\xloop will be used ‘externally’, surrounding ordinary \loops.
56 \def\iloop#1\irepeat{\def\ibody{#1}\iiterate}

57 \def\iiterate{\ibody\let\inext=\iiterate\else\let\inext=\relax\fi

58 \inext}

59 \def\xloop#1\xrepeat{\def\xbody{#1}\xiterate}

60 \def\xiterate{\xbody\let\xnext\xiterate\else\let\xnext\relax\fi\xnext}

The following assignments are necessary to make \loop. . . \if. . . \repeat con-
structions skippable inside another \if.
61 \let\repeat\fi

62 \let\irepeat\fi

63 \let\xrepeat\fi

4.7 Allocation of registers

\fp@loopcount

\fp@loopcountii

\fp@result

\fp@carryover

\fp@tempcount

\fp@tempcountii

Several count registers are needed. I have tried to keep this number small, which
means that, at some points, I may have chosen a less logical or less readable usage
of counts. Nevertheless, I do not claim to have minimized the number as far as
possible. . .

\fp@loopcount and \fp@loopcountii are often, but not always, used for
\loops, \fp@loopcountii sometimes just stores the finishing number. \fp@result
and \fp@carryover are used to store the intermediate results of computations.
\fp@tempcount and \fp@tempcountii are scratch registers whose values should
not be considered to be the same after the use of any macro, except the simple
array accession abbreviations starting whith \ar@, as explained below.
64 \newcount\fp@loopcount

65 \newcount\fp@loopcountii

66 \newcount\fp@result

67 \newcount\fp@carryover

68 \newcount\fp@tempcount

69 \newcount\fp@tempcountii

4.8 Communication between macros and groups

\fp@setparam

\fp@param

To pass information from one macro to another, or from inside a group to the
outer world, the construction \fp@setparam{〈information〉} is used. It saves
〈information〉 globally in the command sequence \fp@param. This mechanism
is used, e. g., by \fp@regcomp, \fp@getdigit to pass their result to the calling
macro, or by \fp@regadd etc. to make 〈information〉 survive the end of the current
group. Since \xdef is used, 〈information〉 will be fully expanded.
70 \def\fp@setparam#1{\xdef\fp@param{#1}}%

4.9 Array accession

\ar@set

\ar@get

\ar@setsig

\ar@getsig

\ar@setul

\ar@getul

\ar@setll

\ar@getll

The idea of arrays using command sequences like \exmpl@-1 means typing a lot
of unreadable \expandafters and \csnames, so the following abbreviations were

6

introduced. They take the base name of the array as the first argument, if needed
followed by an element number, for the set-commands followed by the third ar-
gument to be the (new) value. No checks are performed if the element number is
inside the boundaries of the array, nor anything else to ensure the validity of the
operation.

\ar@set is used to save digits. \ar@setsig, \ar@setul and \ar@setll set
sign, upper and lower limit of the array. \ar@get, \ar@getsig, \ar@getul and
\ar@getll are used to access the respective command sequences.
71 \def\ar@set#1#2#3{\expandafter\edef\csname#1@\number#2\endcsname{%

72 \number#3}}

73 \def\ar@get#1#2{\csname#1@\number#2\endcsname}

74 \def\ar@setsig#1#2{\expandafter\edef\csname#1@sig\endcsname{#2}}

75 \def\ar@getsig#1{\csname#1@sig\endcsname}

76 \def\ar@getul#1{\csname#1@ul\endcsname}

77 \def\ar@getll#1{\csname#1@ll\endcsname}

78 \def\ar@setul#1#2{\expandafter\edef\csname#1@ul\endcsname{\number#2}}

79 \def\ar@setll#1#2{\expandafter\edef\csname#1@ll\endcsname{\number#2}}

4.10 Miscellaneous

\fp@settomax The macro \fp@settomax assigns the maximum of the two numbers given as #2
and #3 to the counter #1.
80 \def\fp@settomax#1#2#3{%

81 \ifnum#2<#3\relax

82 #1=#3\relax

83 \else

84 #1=#2\relax

85 \fi

86 }

\fp@settomin The macro \fp@settomin does the same with the minimum.
87 \def\fp@settomin#1#2#3{%

88 \ifnum#2<#3\relax

89 #1=#2\relax

90 \else

91 #1=#3\relax

92 \fi

93 }

\fp@modulo The macro \fp@modulo computes the result of #1 mod #2 and saves it in
\fp@param.
94 \def\fp@modulo#1#2{%

95 \fp@tempcount=#1\relax

96 \fp@tempcountii=#1\relax

97 \divide\fp@tempcountii#2\relax

98 \multiply\fp@tempcountii#2\relax

99 \advance\fp@tempcount-\fp@tempcountii

100 \edef\fp@param{\number\fp@tempcount}}

4.11 Setting and getting register contents

\fp@regread

\fp@regread@raw

The macro \fp@regread reads the string or command sequence (after expan-
sion) given as #2 into register #1. The main work is done by the subroutine

7

\fp@readchars, where \fp@tempcount is used to indicate the current position.
\fp@arrayname is used to pass #1 to \fp@readchars.

101 \def\fp@regread#1#2{%

102 \fp@regread@raw{#1}{#2}%

103 \fp@cleanreg{#1}}

104 \def\fp@regread@raw#1#2{%

Initialize \fp@tempcount. Initialize \fp@arrayname. Make #1 positive by default.
105 \fp@tempcount=0

106 \edef\fp@arrayname{#1}%

107 \ar@setsig{#1}{+}%

Now call \fp@readchars with #2 fully expanded, followed by a decimal sign. The
decimal sign is necessary because \fp@readchars expects at least one decimal sign
to occur in the given string, so if #2 is, say, 100, this will make it readable. On
the other hand, a superficial decimal sign at the end of a number like 1.34 will be
ignored.

108 \edef\fp@scratch{#2\fp@decimalsign}%

109 \expandafter\fp@readchars\fp@scratch\end

If the first character of #2 has been a decimal sign, the upper limit will be wrong,
no pre-point digits will be present. This does not conform the internal syntax and
is corrected now.

110 \ifnum\ar@getul{#1}=-1

111 \ar@setul{#1}{0}%

112 \ar@set{#1}{0}{0}%

113 \fi

The n digits before the decimal sign (if any) have been read in from left to right,
assigning positions from 0 . . . n, so they have to be swapped to their correct po-
sitions. This is done with two counters, one starting as 0, the other as n, using
\fp@scratch for temporary storage.

114 \fp@tempcount=0

115 \fp@tempcountii=\ar@getul{#1}\relax

116 \iloop

117 \ifnum\fp@tempcount<\fp@tempcountii

118 \edef\fp@scratch{\ar@get{#1}{\fp@tempcountii}}%

119 \ar@set{#1}{\fp@tempcountii}{\ar@get{#1}{\fp@tempcount}}%

120 \ar@set{#1}{\fp@tempcount}{\fp@scratch}%

121 \advance\fp@tempcount by 1

122 \advance\fp@tempcountii by -1

123 \irepeat

124 }% end \fp@regread@raw

\fp@readchars As mentioned above, this subroutine is called by \fp@regread to do the actual
work of reading the given number character after character into the register passed
using \fp@arrayname. It will stop if it sees an end token.

125 \def\fp@readchars#1{%

126 \ifx#1\end

If the condition is true, the token read before has been the final one. So at the end,
do not call \fp@readchars any more, and use the current value of \fp@tempcount
to assign the correct lower limit to the register.

127 \let\inext=\relax

8

128 \ifnum\fp@tempcount<0

129 \advance\fp@tempcount by 1

130 \ar@setll{\fp@arrayname}{\fp@tempcount}%

131 \else

132 \ar@setll{\fp@arrayname}{0}%

133 \fi

134 \else % \ifx#1\end

If the condition is false, further characters will follow, so \fp@readchars will have
to be called again after finishing this character.

135 \let\inext=\fp@readchars

Now check the character and perform the respective actions.
136 \ifx#1+%

An optional ‘+’ has been encountered, nothing to do.
137 \else

138 \ifx#1-%

‘-’ sign, toggle sign.
139 \if\ar@getsig{\fp@arrayname}-%

140 \ar@setsig{\fp@arrayname}{+}%

141 \else

142 \ar@setsig{\fp@arrayname}{-}%

143 \fi

144 \else

145 \if\noexpand#1\fp@decimalsign%

A decimal sign has been encountered. So, if it is the first one, switch to reading
afterpoint digits, otherwise ignore it.

146 \ifnum\fp@tempcount>-1

147 \advance\fp@tempcount by -1

148 \ar@setul{\fp@arrayname}{\fp@tempcount}%

149 \fp@tempcount=-1

150 \fi

151 \else

None of the above characters was encountered, so assume a digit, and read it into
the current position. Then step \fp@tempcount by +1 if prepoint digits are read
in, or by −1 if the decimal sign has already been seen.

152 \ar@set{\fp@arrayname}{\fp@tempcount}{#1}%

153 \ifnum\fp@tempcount<0

154 \advance\fp@tempcount by -1

155 \else

156 \advance\fp@tempcount by 1

157 \fi

158 \fi% end \if\noexpand#1\fp@decimalsign

159 \fi% end \ifx#1-

160 \fi% end \ifx#1+

161 \fi% end \ifx#1\end

That’s all, call \inext.
162 \inext

163 }% end \fp@readchars

\fp@regget The macro \fp@regget is used to read the contents of the register #1 into the
command sequence #2.

9

164 \def\fp@regget#1#2{%

First, we get the sign of the number. If negative, #2 is initialized as ‘-’, otherwise
as empty.

165 \if\ar@getsig{#1}-%

166 \def#2{-}%

167 \else

168 \def#2{}%

169 \fi

Then we set up \fp@tempcount as the counter for an \iloop, starting at the upper
limit of #1.

170 \fp@tempcount=\ar@getul{#1}\relax

171 \iloop

If the \fp@tempcount is −1, we have to append a decimal sign.
172 \ifnum\fp@tempcount=-1

173 \edef#2{#2\fp@decimalsign}%

174 \fi

Now append the corresponding digit.
175 \edef#2{#2\ar@get{#1}{\fp@tempcount}}%

And repeat if the lower limit of #1 is not yet reached.
176 \ifnum\fp@tempcount>\ar@getll{#1}\relax

177 \advance\fp@tempcount by -1

178 \irepeat

179 }% end \def\fp@regget

\fp@cleanreg The macro \fp@cleanreg will clean up the given register. This means that leading
and trailing zeros will be removed, and that −0 will be turned into +0 to be
recognised as equal later on.

180 \def\fp@cleanreg#1{%

First, we will iterate until all leading zeros have been removed, except for digit 0
that it is expected to be ‘0’ for all numbers n with −1 < n < 1.

181 \fp@tempcount=\ar@getul{#1}\relax

182 \iloop

183 \ifnum\fp@tempcount>0

184 \ifnum\ar@get{#1}{\fp@tempcount}=0

If this is true, the first digit is a zero and is ‘removed’ by changing the upper limit.
It is not necessary to erase it by setting the array element to \empty or something
like that, because it will not be looked at any more.

185 \advance\fp@tempcount by -1

186 \ar@setul{#1}{\fp@tempcount}%

187 \else

So the condition is false, the first digit is not a zero and the following ones need
not to be looked at.

188 \fp@tempcount=0

189 \fi

190 \irepeat

Similarly, the trailing zeros are removed.
191 \fp@tempcount=\ar@getll{#1}\relax

192 \iloop

10

193 \ifnum\fp@tempcount<0

194 \ifnum\ar@get{#1}{\fp@tempcount}=0

195 \advance\fp@tempcount by 1

196 \ar@setll{#1}{\fp@tempcount}%

197 \else

198 \fp@tempcount=0

199 \fi

200 \irepeat

Now check if the number is zero, using (x@ll = x@ul)∧ (x@0 = 0) ⇐⇒ x = 0, and
set the sign to ‘+’ if this is the case.

201 \ifnum\ar@getll{#1}=\ar@getul{#1}\relax

202 \ifnum\ar@get{#1}{0}=0\relax

203 \ar@setsig{#1}{+}%

204 \fi

205 \fi

206 }% end \fp@regclean

\fp@getdigit The macro \fp@getdigit will return the digit number #2 of register #1 using
\fp@setparam. If #2 is outside the boundaries of the array, ‘0’ is returned. (Which
is not only sensible, but also mathematically correct.)

207 \def\fp@getdigit#1#2{%

208 \ifnum#2<\ar@getll{#1}\relax

209 \fp@setparam0%

210 \else

211 \ifnum#2>\ar@getul{#1}\relax

212 \fp@setparam0%

213 \else

214 \fp@setparam{\ar@get{#1}{#2}}%

215 \fi

216 \fi

217 }% end \fp@getdigit

\fp@shiftright The macro \fp@shiftright takes register #1 and shifts the decimal sign #2
digits to the right (#2 may be negative or zero, too, so there is no need for a
\fp@shiftleft). The digits are read into \fp@shiftnum, inserting the decimal
sign at the new place. Then, \fp@shiftnum is read into #1 via \fp@regread.

218 \def\fp@shiftright#1#2{%

First, save the value of #2 in \fp@shiftamount. This makes it possible to say,
e. g., \fpshiftright{exmpl}{\fp@tempcount} without side-effects.

219 \edef\fp@shiftamount{\number#2}%

Now, determine the start position. The maximum of the upper limit and
-\fp@shiftamount is used in order to allow the decimal sign of, e. g., 1.1 to be
shifted −5 digits to the right.

220 \fp@settomax{\fp@tempcount}{\ar@getul{#1}}{-\fp@shiftamount}%

Similarly, determine the stop position.
221 \fp@settomin{\fp@tempcountii}{\ar@getll{#1}}{-\fp@shiftamount}%

Now, initialize \fp@shiftnum and begin the \iloop. Read digit after digit using
\fp@getdigit, therefore getting a ‘0’ outside the boundaries. Insert the decimal
sign at the new position given by -\fp@shiftamount.

222 \def\fp@shiftnum{}%

11

223 \iloop

224 \fp@getdigit{#1}{\fp@tempcount}%

225 \edef\fp@shiftnum{\fp@shiftnum\fp@param}%

226 \ifnum\fp@tempcount=-\fp@shiftamount\relax

227 \edef\fp@shiftnum{\fp@shiftnum\fp@decimalsign}%

228 \fi

229 \ifnum\fp@tempcount>\fp@tempcountii

230 \advance\fp@tempcount by -1

231 \irepeat

Finally, assign the value to #1.
232 \fp@regread{#1}{\fp@shiftnum}%

233 }% end \fp@shiftright

\fp@firstnonzero The macro \fp@firstnonzero returns the first non-zero digit of register #1 via
\fp@setparam.

234 \def\fp@firstnonzero#1{%

If #1 is zero, the \iloop below will run infinitely, so this case has to be checked
separately by comparing #1 to the internal register @0 which holds zero. ‘0’ is
returned if #1 is zero.

235 \fp@regcomp{#1}{@0}%

236 \if\fp@param=%

237 \fp@setparam0%

Otherwise, each digit is checked, starting at the upper limit, and the position of
first digit differing from zero is returned in \fp@param.

238 \else

239 \fp@tempcount=\ar@getul{#1}\relax%

240 \fp@tempcountii=\ar@getll{#1}\relax%

241 \iloop

242 \ifnum\ar@get{#1}{\fp@tempcount}>0

243 \fp@setparam{\number\fp@tempcount}%

244 \fp@tempcount=\fp@tempcountii

245 \fi

246 \ifnum\fp@tempcount>\fp@tempcountii

247 \advance\fp@tempcount by -1

248 \irepeat

249 \fi

250 }% end \fp@firstnonzero

4.12 Comparison of registers

\fp@regcomp The macro \fp@regcomp compares the two specified registers. It saves the result
of the comparison (either ‘<’, ‘>’, or ‘=’) in \fp@param. First, it checks whether
the two numbers have the same sign or not. If not, the comparison is very easy,
otherwise \fp@regcomp@main is called to do the work.

251 \def\fp@regcomp#1#2{%

252 {%

253 \if\ar@getsig{#1}-%

254 \if\ar@getsig{#2}-%

255 \fp@regcomp@main{#1}{#2}<>%

256 \else

257 \fp@setparam{<}%

12

258 \fi

259 \else

260 \if\ar@getsig{#2}-%

261 \fp@setparam{>}%

262 \else

263 \fp@regcomp@main{#1}{#2}><%

264 \fi

265 \fi

266 }%

267 }

\fp@regcomp@main The macro \fp@regcomp@main takes four parameters: The two registers to be
compared, and two tokens to be used as result. This is needed because if, e. g.,
two numbers have the same sign and are equal for all positions greater than 102,
and number 1 has ‘9’ at position 102 and number 2 has ‘5’, then the result must
be ‘<’ if n1 < n2 < 0, but ‘>’ if n1 > n2 > 0.

First, the range of digits to compare is determined. Then, each pair of digits
is compared. If different, \fp@param is set and the loop is terminated by setting
the loop counter to the stop position. If the digits are equal and there are no more
digits to compare, the numbers are equal.

268 \def\fp@regcomp@main#1#2#3#4{%

269 \fp@settomax{\fp@loopcount}{\ar@getul{#1}}{\ar@getul{#2}}%

270 \fp@settomin{\fp@loopcountii}{\ar@getll{#1}}{\ar@getll{#2}}%

271 \loop

272 \fp@getdigit{#1}{\fp@loopcount}%

273 \fp@tempcount=\fp@param\relax

274 \fp@getdigit{#2}{\fp@loopcount}%

275 \fp@tempcountii=\fp@param\relax

276 \ifnum\fp@tempcount<\fp@tempcountii

277 \fp@setparam{#4}%

278 \fp@loopcount=\fp@loopcountii

279 \else

280 \ifnum\fp@tempcount>\fp@tempcountii

281 \fp@setparam{#3}%

282 \fp@loopcount=\fp@loopcountii

283 \else

284 \ifnum\fp@loopcount=\fp@loopcountii

285 \fp@setparam{=}%

286 \fi

287 \fi

288 \fi

289 \ifnum\fp@loopcount>\fp@loopcountii

290 \advance\fp@loopcount by -1

291 \repeat

292 }% end \fp@regcomp@main

4.13 Unary Operations

\fp@regabs The macro \fp@regabs turns register #1 into its amount. This is rather trivial:
just set the sign to ‘+’.

293 \def\fp@regabs#1{%

294 \ar@setsig{#1}{+}%

295 }

13

\fp@regneg The macro \fp@regneg negates register #1. It checks whether the actual sign is
‘+’ or ‘-’ and sets it to its opposite, except that nothing is done if the number is
zero.

296 \def\fp@regneg#1{%

297 \if\ar@getsig{#1}-%

298 \ar@setsig{#1}{+}%

299 \else

300 \fp@regcomp{#1}{@0}%

301 \if\fp@param=%

302 \else

303 \ar@setsig{#1}{-}%

304 \fi

305 \fi

306 }

\fp@reground The macro \fp@reground rounds register #1 with a target accuracy given as #2
(as a power of ten).

307 \def\fp@reground#1#2{%

Fist, if the desired accuracy is smaller than the lower limit of #1, nothing has to
be done.

308 \ifnum#2>\ar@getll{#1}\relax

309 {%

Otherwise, we check the following digit. If it is greater than four, we have to
advance digit #2 before truncating the number. This means adding 10#2 for
positive #1 and subtracting 10#2 for negative #1.

310 \fp@tempcount=#2\relax

311 \advance\fp@tempcount by -1

312 \fp@getdigit{#1}{\fp@tempcount}%

313 \ifnum\fp@param>4

314 \fp@regcopy{fp@temp}{@1}%

315 \fp@shiftright{fp@temp}{#2}%

316 \fp@regcomp{#1}{@0}%

317 \if\fp@param<%

318 \fp@regneg{fp@temp}%

319 \fi

320 \fp@regadd{#1}{fp@temp}%

321 \fi

Afterwards, we set the lower limit to #2. If #2 is greater than zero, we set the
lower limit and all digits n with 0 ≤ n < #2 to zero. Then we read the number
using \fp@regget, make it globally available and read it into #1 after finishing
the local group.

322 \ifnum#2>0

323 \fp@loopcount=#2\relax

324 \iloop

325 \ifnum\fp@loopcount>0

326 \advance\fp@loopcount by -1

327 \ar@set{#1}{\fp@loopcount}{0}%

328 \irepeat

329 \ar@setll{#1}{0}%

330 \else

331 \ar@setll{#1}{#2}%

14

332 \fi

333 \fp@regget{#1}{\fp@scratch}%

334 \fp@setparam\fp@scratch

335 }%

336 \fp@regread{#1}{\fp@param}%

337 \fi

338 } % end \fp@reground

4.14 Binary operations

\fp@regcopy The macro \fp@regcopy assigns the value of register #2 to register #1. This is
done simply by reading register #2 into a scratch control sequence and then reading
this into register #1.

339 \def\fp@regcopy#1#2{%

340 \fp@regget{#2}{\fp@scratch}%

341 \fp@regread{#1}{\fp@scratch}%

342 }

\fp@regadd The macro \fp@regadd adds the value of register #2 to register #1.
343 \def\fp@regadd#1#2{%

344 {%

First, check whether the two numbers have the same sign.
345 \if\ar@getsig{#1}\ar@getsig{#2}%

If the two numbers have the same sign, the addition can be done by adding each
two corresponding digits and a possible carryover, starting at min(ll1,ll2), ending
at max(ul1,ul2). Those values are saved in \fp@add@start and \fp@add@finish.

346 \fp@settomin{\fp@loopcount}{\ar@getll{#1}}{\ar@getll{#2}}%

347 \edef\fp@add@start{\number\fp@loopcount}%

348 \fp@settomax{\fp@tempcount}{\ar@getul{#1}}{\ar@getul{#2}}%

349 \edef\fp@add@finish{\number\fp@tempcount}%

Initialize \fp@carryover.
350 \fp@carryover=0

Now start the main loop. Each digit is computed in counter \fp@result as the
sum of the corresponding digits plus the carryover from the previous pair. If the
sum is greater than 10, it is reduced by 10 and \fp@carryover is set to 1. (No
sum greater than 19 is possible.)

351 \loop

352 \fp@getdigit{#1}{\fp@loopcount}%

353 \fp@result=\fp@param\relax

354 \fp@getdigit{#2}{\fp@loopcount}%

355 \advance\fp@result by \fp@param\relax

356 \advance\fp@result by \fp@carryover

357 \ifnum\fp@result>9

358 \fp@carryover=1

359 \advance\fp@result by -10

360 \else

361 \fp@carryover=0

362 \fi

363 \ar@set{#1}{\fp@loopcount}{\fp@result}%

364 \ifnum\fp@loopcount<\fp@add@finish\relax

15

365 \advance\fp@loopcount by 1

366 \repeat

If the last pair had a carryover, take it into account. Then adjust the lower and
upper limit of the result.

367 \ifnum\fp@carryover>0

368 \advance\fp@loopcount by 1

369 \ar@set{#1}{\fp@loopcount}{\fp@carryover}%

370 \fi

371 \ar@setll{#1}{\fp@add@start}%

372 \ar@setul{#1}{\fp@loopcount}%

Finally, save the result in \fp@param to make it survive the endgroup character
after \fi.

373 \fp@regget{#1}{\fp@scratch}%

374 \fp@setparam\fp@scratch

That’s it. But if the two numbers have different signs, the situation is a bit more
complicated. In this case, the amounts of #1 and #2 are saved in two temporary
registers (fp@tempi and fp@tempii). The smaller one is subtracted from the larger
one, and the sign of the result is adjusted according to the sign of #1 and #2. This
is done by the subroutine \fp@regadd@sub, which also takes care of saving the
result in \fp@param.

375 \else % \if sign

376 \fp@regcopy{fp@tempi}{#1}%

377 \fp@regcopy{fp@tempii}{#2}%

378 \fp@regabs{fp@tempi}%

379 \fp@regabs{fp@tempii}%

380 \fp@regcomp{fp@tempi}{fp@tempii}%

381 \if\fp@param>%

382 \fp@regadd@sub{#1}{fp@tempi}{fp@tempii}%

383 \else

384 \fp@regadd@sub{#2}{fp@tempii}{fp@tempi}%

385 \fi

386 \fi % end \if sign

Now end the group to keep everything local, and read the result in \fp@param
into register #1.

387 }%

388 \fp@regread{#1}{\fp@param}%

389 }% end \fp@regadd

\fp@regadd@sub The macro \fp@regadd@sub is a subroutine of \fp@regadd.
390 \def\fp@regadd@sub#1#2#3{%

First, subtract #3 from #2. The restriction #2 > #3 is ensured by the calling
\fp@regadd.

391 \fp@regsub@restricted{#2}{#3}%

#1 is the original number of which #2 is the amount. So, if it is negative, the final
result also has to be negative. This is done by the following four lines.

392 \fp@regcomp{#1}{@0}%

393 \if\fp@param<%

394 \fp@regneg{#2}%

395 \fi

16

Now, the final result is stored in #2. Make it globally available using \fp@setparam.
396 \fp@regget{#2}{\fp@scratch}%

397 \fp@setparam\fp@scratch

398 }% end \fp@regadd@sub

\fp@regsub@restricted The macro \fp@regsub@restricted does the actual work of subtracting #2 from
#1, provided that #1 is greater than #2. It is called by \fp@regadd@sub and by
\fp@regdiv.

399 \def\fp@regsub@restricted#1#2{%

First, we start a group to keep counters etc. local. Then, we determine the start
and end position for the loop, as above for \fp@regadd.

400 {%

401 \fp@settomin{\fp@loopcount}{\ar@getll{#1}}{\ar@getll{#2}}%

402 \edef\fp@lowermin{\number\fp@loopcount}%

403 \fp@settomax{\fp@tempcount}{\ar@getul{#1}}{\ar@getul{#2}}%

404 \edef\fp@uppermin{\number\fp@tempcount}%

Now subtract the corresponding digits, taking into account a possible carryover.
405 \fp@carryover=0

406 \loop

407 \fp@getdigit{#1}{\fp@loopcount}%

408 \fp@result=\fp@param\relax

409 \fp@getdigit{#2}{\fp@loopcount}%

410 \advance\fp@result by -\fp@param\relax

411 \advance\fp@result by \fp@carryover

If the result is < 0, add 10 to the result and set the carryover to −1.
412 \ifnum\fp@result<0

413 \fp@carryover=-1

414 \advance\fp@result by 10

415 \else

416 \fp@carryover=0

417 \fi

Now save the result and repeat if there are further digits.
418 \ar@set{#1}{\fp@loopcount}{\fp@result}%

419 \ifnum\fp@loopcount<\fp@uppermin\relax

420 \advance\fp@loopcount by 1

421 \repeat

If there is a carryover for the last two digits, take it into account.
422 \ifnum\fp@carryover=-1

423 \advance\fp@loopcount by 1

424 \ar@set{#1}{\fp@loopcount}{-1}%

425 \fi

Now adjust the upper and lower limit of the result, and save it in \fp@param.
426 \ar@setll{#1}{\fp@lowermin}%

427 \ar@setul{#1}{\fp@loopcount}%

428 \fp@regget{#1}{\fp@scratch}%

429 \fp@setparam\fp@scratch

430 }%

Finally, assign the result to #1 inside the current group.
431 \fp@regread{#1}{\fp@param}%

432 }% end \fp@regsub@restricted

17

\fp@regsub The macro \fp@regsub subtracts register #2 from register #1. This is done by
negating #2 inside a group and calling \fp@regadd.

433 \def\fp@regsub#1#2{%

434 {%

435 \fp@regneg{#2}%

436 \fp@regadd{#1}{#2}%

437 \fp@regget{#1}{\fp@scratch}%

438 \fp@setparam\fp@scratch

439 }%

440 \fp@regread{#1}{\fp@param}%

441 }

\fp@regmul The macro \fp@regmul multiplies the value of register #1 with the value of register
#2.

442 \def\fp@regmul#1#2{%

443 {%

First, we initialize the temporary register fp@temp1 as zero; it will be used to
hold the results so far. Then we start the outer \xloop which will run through all
digits of #2, beginning at the lower limit.

444 \fp@regcopy{fp@temp1}{@0}%

445 \fp@loopcountii=\ar@getll{#2}\relax

446 \xloop

Then we initialize the inner loop, which multplies the current digit of #2 with #1
digit after digit, saving the result in \fp@newnum.

447 \fp@loopcount=\ar@getll{#1}\relax

448 \fp@carryover=0

449 \def\fp@newnum{}%

450 \loop

451 \fp@result=\ar@get{#2}{\fp@loopcountii}\relax

452 \multiply\fp@result by \ar@get{#1}{\fp@loopcount}\relax

453 \advance\fp@result by \fp@carryover

If the result is greater than 9, we set the carryover as (\fp@result mod 10) and
the result to (\fp@resultdiv 10).

454 \ifnum\fp@result>9

455 \fp@carryover=\fp@result

456 \divide\fp@carryover by 10

457 \fp@tempcount=\fp@carryover

458 \multiply\fp@tempcount by 10

459 \advance\fp@result by -\fp@tempcount

460 \else

461 \fp@carryover=0

462 \fi

463 \edef\fp@newnum{\number\fp@result\fp@newnum}%

464 \ifnum\fp@loopcount<\ar@getul{#1}\relax

465 \advance\fp@loopcount by 1

466 \repeat

467 \edef\fp@newnum{\number\fp@carryover\fp@newnum}%

468 \fp@regread{fp@temp2}{\fp@newnum}%

Now fp@temp2 holds the partial result for this digit of #2. We have to multiply
it with 10n, if n is the number of digits of #2 completed so far. This is done by
calling \fp@shiftright with −n as second argument.

18

469 \fp@tempcount=\fp@loopcountii

470 \advance\fp@tempcount by -\number\ar@getll{#2}\relax

471 \fp@shiftright{fp@temp2}{\fp@tempcount}%

Now we add fp@temp2 to the results so far and iterate if there are further digits.
472 \fp@regadd{fp@temp1}{fp@temp2}%

473 \ifnum\fp@loopcountii<\ar@getul{#2}\relax

474 \advance\fp@loopcountii by 1

475 \xrepeat

The final result of the multiplication will have as much afterpoint digits as #1 and
#2 have together. Adjust this.

476 \fp@tempcount=\ar@getll{#1}\relax

477 \advance\fp@tempcount by \ar@getll{#2}\relax

478 \fp@shiftright{fp@temp1}{\fp@tempcount}%

If #1 and #2 have different signs, the result is negative, otherwise positive.
479 \if\ar@getsig{#1}\ar@getsig{#2}%

480 \else

481 \fp@regneg{fp@temp1}%

482 \fi

Finally, save the result via \fp@setparam and assign it to #1 after the end of the
group.

483 \fp@regget{fp@temp1}{\fp@scratch}%

484 \fp@setparam\fp@scratch

485 }%

486 \fp@regread{#1}{\fp@param}%

487 } % end \fp@regmul

\fp@regdiv The macro \fp@regdiv divides register #1 by register #2. It works by repeated
subtraction.

488 \def\fp@regdiv#1#2{%

489 {%

The amount of the two numbers is read into the two temporary registers fp@temp1
and fp@temp2.

490 \fp@regcopy{fp@temp1}{#1}%

491 \fp@regcopy{fp@temp2}{#2}%

492 \fp@regabs{fp@temp1}%

493 \fp@regabs{fp@temp2}%

First, we determine the initial shift for fp@temp2. This is the shift which
will make fp@temp2 have as many digits before the decimal sign as fp@temp1.
\fp@firstnonzero is used, because the upper limit need not be the first non-zero
digit.

494 \fp@firstnonzero{fp@temp1}%

495 \fp@loopcountii=\fp@param\relax

496 \fp@firstnonzero{fp@temp2}%

497 \advance\fp@loopcountii by -\fp@param\relax

498 \fp@shiftright{fp@temp2}{\fp@loopcountii}%

Now we initialize \fp@divnum which will hold the result. If \fp@loopcountii is
smaller than zero, i. e., if the first digit of the result that will be computed is after
the decimal sign, we have to initialize \fp@divnum with the decimal sign as well
as with an appropriate number of zeros following it.

19

499 \def\fp@divnum{}%

500 \ifnum\fp@loopcountii<0

501 \fp@tempcount=\fp@loopcountii

502 \loop

503 \ifnum\fp@tempcount<-1

504 \edef\fp@divnum{0\fp@divnum}%

505 \advance\fp@tempcount by 1

506 \repeat

507 \edef\fp@divnum{\fp@decimalsign\fp@divnum}%

508 \fi

The main loop follows. Each digit is determined by subtracting the divisor n times
from the dividend until the result is smaller than the divisor. This is done only if
\fp@loopcountii plus one is greater than -\fp@accuracy. If the divisor is equal
to the dividend, the division is complete and the \xloop is terminated. Therefore,
\fp@accuracy is locally set to ‘0’, so that possibly following zeros are computed
until the digit representing 100. At the end, the divisor is divided by 10, and the
next digit follows.

509 \xloop

510 \fp@tempcount=\fp@loopcountii

511 \advance\fp@tempcount by 1

512 \ifnum\fp@tempcount>-\fp@accuracy\relax

513 \fp@loopcount=0

514 \loop

515 \fp@regcomp{fp@temp2}{fp@temp1}%

516 \if\fp@param=%

517 \def\fp@accuracy{0}%

518 \gdef\fp@param{<}%

519 \fi

520 \if\fp@param<%

521 \fp@regsub@restricted{fp@temp1}{fp@temp2}%

522 \advance\fp@loopcount by 1

523 \repeat

524 \ifnum\fp@loopcountii=-1

525 \edef\fp@divnum{\fp@divnum\fp@decimalsign}%

526 \fi

527 \edef\fp@divnum{\fp@divnum\number\fp@loopcount}%

528 \fp@shiftright{fp@temp2}{-1}%

529 \advance\fp@loopcountii by -1

530 \xrepeat

The sign of the result is set according to the signs of #1 and #2.
531 \if\ar@getsig{#1}\ar@getsig{#2}%

532 \fp@regread{fp@temp1}{\fp@divnum}%

533 \else

534 \fp@regread{fp@temp1}{-\fp@divnum}%

535 \fi

Now save the result in \fp@param. After endgroup, read it into #1.
536 \fp@regget{fp@temp1}{\fp@scratch}%

537 \fp@setparam\fp@scratch

538 }%

539 \fp@regread{#1}{\fp@param}%

540 }

20

4.15 User interface

\fp@call@bin The macro \fp@call@bin is a common calling command used by the user com-
mands for binary operations. It reads the values given in #2 and #3 into temporary
registers, performs the operation specified in #4, and finally assigns the result to
the command sequence given as #1.

541 \def\fp@call@bin#1#2#3#4{%

542 {%

543 \fp@regread{fp@user1}{#2}%

544 \fp@regread{fp@user2}{#3}%

545 \csname fp@reg#4\endcsname{fp@user1}{fp@user2}%

546 \fp@regget{fp@user1}{\fp@scratch}%

547 \fp@setparam\fp@scratch

548 }%

549 \edef#1{\fp@param}%

550 }

\fpAdd As described above, the main work is done by \fp@call@bin, so this macro reduces
to passing the parameters and specifying the desired operation.

551 \def\fpAdd#1#2#3{\fp@call@bin{#1}{#2}{#3}{add}}

\fpSub Just like \fpAdd.
552 \def\fpSub#1#2#3{\fp@call@bin{#1}{#2}{#3}{sub}}

\fpMul Just like \fpAdd.
553 \def\fpMul#1#2#3{\fp@call@bin{#1}{#2}{#3}{mul}}

\fpDiv Just like \fpAdd.
554 \def\fpDiv#1#2#3{\fp@call@bin{#1}{#2}{#3}{div}}

\fp@call@un Similarly, the unary operations \fpAbs and \fpNeg refer to the common macro
\fp@call@un.

555 \def\fp@call@un#1#2#3{%

556 {%

557 \fp@regread{fp@user1}{#2}%

558 \csname fp@reg#3\endcsname{fp@user1}%

559 \fp@regget{fp@user1}{\fp@scratch}%

560 \fp@setparam\fp@scratch

561 }%

562 \edef#1{\fp@param}%

563 }

\fpAbs Pass the information and specify the action.
564 \def\fpAbs#1#2{\fp@call@un{#1}{#2}{abs}}

\fpNeg Just like \fpAbs.
565 \def\fpNeg#1#2{\fp@call@un{#1}{#2}{neg}}

\fpRound This macro does not fit into the scheme, so it has to be defined seperately.
566 \def\fpRound#1#2#3{%

567 {%

568 \fpRegSet{fp@user1}{#2}%

569 \fpRegRound{fp@user1}{#3}%

21

570 \fpRegGet{fp@user1}{\fp@scratch}%

571 \fp@setparam\fp@scratch

572 }%

573 \edef#1{\fp@param}%

574 }

\fpRegSet The register operations \fpRegSet, \fpRegGet, \fpRegAdd, \fpRegSub, \fpRegMul,
\fpRegDiv, \fpRegAbs, \fpRegNeg, \fpRegCopy and \fpRegRound have the same
syntax as the internal variants, so their definitions reduce to passing the parame-
ters. The register name is always given as the first parameter.

575 \def\fpRegSet#1#2{\fp@regread{#1}{#2}}

\fpRegGet As described above.
576 \def\fpRegGet#1#2{\fp@regget{#1}{#2}}

\fpRegAdd As described above.
577 \def\fpRegAdd#1#2{\fp@regadd{#1}{#2}}

\fpRegSub As described above.
578 \def\fpRegSub#1#2{\fp@regsub{#1}{#2}}

\fpRegMul As described above.
579 \def\fpRegMul#1#2{\fp@regmul{#1}{#2}}

\fpRegDiv As described above.
580 \def\fpRegDiv#1#2{\fp@regdiv{#1}{#2}}

\fpRegAbs As described above.
581 \def\fpRegAbs#1{\fp@regabs{#1}}

\fpRegNeg As described above.
582 \def\fpRegNeg#1{\fp@regneg{#1}}

\fpRegCopy As described above.
583 \def\fpRegCopy#1#2{\fp@regcopy{#1}{#2}}

\fpRegRound As described above.
584 \def\fpRegRound#1#2{\fp@reground{#1}{#2}}

\fpAccuracy

\fp@accuracy

The user command \fpAccuracy \edefs the internal parameter \fp@accuracy,
which stores the maximum number of digits after the decimal sign, i. e., the min-
imum for the lower limit of fp numbers. At the moment, \fp@accuracy does not
affect the accuracy of any operation except \fp@regdiv. In fact, it was introduced
when the definition of a termination condition for the loop was not possible with-
out an externally given limit. \fp@accuracy is initialized to ‘5’ digits after the
decimal sign.

585 \def\fpAccuracy#1{\edef\fp@accuracy{#1}}

586 \fpAccuracy{5}

22

\fpDecimalSign

\fp@decimalsign

The command \fpDecimalSign allows the user to select any character for use as
the decimal sign. The character is stored in \fp@decimalsign. Normally, the
decimal sign will be either ‘.’ or ‘,’; a comma is the default. (Take a look at
ISO 31-0, part 3.3.2, if you dislike this.)

587 \def\fpDecimalSign#1{\edef\fp@decimalsign{#1}}

588 \fpDecimalSign{,}

\fpThousandsep

\fp@thousandsep

Those macros are used to define and store a thousand seperator used by
\fp@regoutput. By default, there is none.

589 \def\fpThousandSep#1{\edef\fp@thousandsep{#1}}

590 \fpThousandSep{}

4.16 Constants

@0

@1

The number zero ist stored in register @0, the number one in register @1.
591 \fp@regread{@0}{0}

592 \fp@regread{@1}{1}

4.17 Finish

Finally, restore the catcode of ‘@’ and \endinput.
593 \catcode‘\@=\atcatcode\relax

594 \endinput

595 〈/fltmain〉

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols
\: 53, 54
\@0 591
\@1 591
\@ifnch 41, 42, 54
\@ifnextchar 37
\@let@token 41, 43, 46, 54
\@sptoken 43, 53
\@xifnch 44, 54

A
\ar@get 71,

118, 119, 175,
184, 194, 202,
214, 242, 451, 452

\ar@getll 71, 176, 191,
201, 208, 221,
240, 270, 308,
346, 401, 445,
447, 470, 476, 477

\ar@getsig
. . 71, 139, 165,
253, 254, 260,
297, 345, 479, 531

\ar@getul 71,
110, 115, 170,
181, 201, 211,
220, 239, 269,
348, 403, 464, 473

\ar@set 71, 112, 119,
120, 152, 327,
363, 369, 418, 424

\ar@setll 71,
130, 132, 196,
329, 331, 371, 426

\ar@setsig 71,
107, 140, 142,
203, 294, 298, 303

\ar@setul . . 71, 111,
148, 186, 372, 427

\AtBeginDocument 29, 30
\atcatcode 34, 593

F
\fp@accuracy

. . . . 512, 517, 585
\fp@add@finish 349, 364
\fp@add@start . 347, 371
\fp@arrayname . 106,

130, 132, 139,
140, 142, 148, 152

\fp@call@bin
. . . . 541, 551–554

\fp@call@un 555, 564, 565
\fp@carryover 64, 350,

356, 358, 361,
367, 369, 405,
411, 413, 416,
422, 448, 453,
455–457, 461, 467

23

\fp@cleanreg . . 103, 180

\fp@decimalsign 108,
145, 158, 173,
227, 507, 525, 587

\fp@divnum
. 499, 504, 507,
525, 527, 532, 534

\fp@firstnonzero . .
. . . . 234, 494, 496

\fp@getdigit 207, 224,
272, 274, 312,
352, 354, 407, 409

\fp@loopcount
. . 64, 269, 272,
274, 278, 282,
284, 289, 290,
323, 325–327,
346, 347, 352,
354, 363–365,
368, 369, 372,
401, 402, 407,
409, 418–420,
423, 424, 427,
447, 452, 464,
465, 513, 522, 527

\fp@loopcountii . . .
. . 64, 270, 278,
282, 284, 289,
445, 451, 469,
473, 474, 495,
497, 498, 500,
501, 510, 524, 529

\fp@lowermin . . 402, 426

\fp@modulo 94

\fp@newnum
. 449, 463, 467, 468

\fp@param 70,
100, 225, 236,
273, 275, 301,
313, 317, 336,
353, 355, 381,
388, 393, 408,
410, 431, 440,
486, 495, 497,
516, 518, 520,
539, 549, 562, 573

\fp@readchars . 109, 125

\fp@regabs 293, 378,
379, 492, 493, 581

\fp@regadd . . . 320,
343, 436, 472, 577

\fp@regadd@sub
. . . . 382, 384, 390

\fp@regclean 206

\fp@regcomp
. 235, 251, 300,
316, 380, 392, 515

\fp@regcomp@main . .
. . . . 255, 263, 268

\fp@regcopy . . . 314,
339, 376, 377,
444, 490, 491, 583

\fp@regdiv . . . 488, 580

\fp@regget 164, 333,
340, 373, 396,
428, 437, 483,
536, 546, 559, 576

\fp@regmul . . . 442, 579

\fp@regneg 296, 318,
394, 435, 481, 582

\fp@regread 101, 232,
336, 341, 388,
431, 440, 468,
486, 532, 534,
539, 543, 544,
557, 575, 591, 592

\fp@regread@raw . . . 101

\fp@reground . . 307, 584

\fp@regsub . . . 433, 578

\fp@regsub@restricted

. . . . 391, 399, 521

\fp@result . 64, 353,
355–357, 359,
363, 408, 410–
412, 414, 418,
451–455, 459, 463

\fp@scratch . . . 108,
109, 118, 120,
333, 334, 340,
341, 373, 374,
396, 397, 428,
429, 437, 438,
483, 484, 536,
537, 546, 547,
559, 560, 570, 571

\fp@setparam 70, 209,
212, 214, 237,
243, 257, 261,
277, 281, 285,
334, 374, 397,
429, 438, 484,
537, 547, 560, 571

\fp@settomax . . . 80,
220, 269, 348, 403

\fp@settomin . . . 87,
221, 270, 346, 401

\fp@shiftamount . . .
. . . . 219–221, 226

\fp@shiftnum
. 222, 225, 227, 232

\fp@shiftright
. . . . 218, 315,
471, 478, 498, 528

\fp@tempcount
. . . 64, 95, 99,
100, 105, 114,
117, 119–121,
128–130, 146–
149, 152–154,
156, 170, 172,
175–177, 181,
183–186, 188,
191, 193–196,
198, 220, 224,
226, 229, 230,
239, 242–244,
246, 247, 273,
276, 280, 310–
312, 348, 349,
403, 404, 457–
459, 469–471,
476–478, 501,
503, 505, 510–512

\fp@tempcountii 64,
96–99, 115, 117–
119, 122, 221,
229, 240, 244,
246, 275, 276, 280

\fp@thousandsep . . . 589
\fp@uppermin . . 404, 419
\fpAbs 2, 564
\fpAccuracy 3, 585
\fpAdd 2, 551
\fpDecimalSign

. . . . 3, 29, 30, 587
\fpDiv 2, 554
\fpexample 18
\fpMul 2, 553
\fpNeg 2, 565
\fpRegAbs 2, 581
\fpRegAdd 2, 577
\fpRegCopy 3, 583
\fpRegDiv 2, 580
\fpRegGet 2, 20, 570, 576
\fpRegMul 2, 579
\fpRegNeg 2, 582
\fpRegRound . 2, 569, 584
\fpRegSet 2, 19, 568, 575
\fpRegSub 2, 578
\fpRound 2, 566
\fpSub 2, 552
\fptemp 20, 21

24

\fpThousandSep 589, 590
\fpThousandsep 589

I
\iloop 56,

116, 171, 182,
192, 223, 241, 324

\inext
57, 58, 127, 135, 162

\input 32

L
\loop 271, 351,

406, 450, 502, 514

N
\next 6, 7

R
\reserved@a 39, 47
\reserved@b 40, 49

\reserved@c 44, 47, 49, 52

\reserved@d 38, 46

X

\xloop 56, 446, 509

\xnext 60

\xrepeat 59, 63, 475, 530

Change History

v1.0a
General: First public release 1

v1.0b
General: Some spaces sneaked into

the output. Fixed. 1
v1.0c

General: Changes necessary for the

rccol package. 1
v1.1

General: Cleanup to freeze develop-
ment. 1

v1.1b
General: Some more freezing

cleanup. 1

25

