JPEG - Idea and Practice

Wikibooks.org

On the 28th of April 2012 the contents of the English as well as German Wikibooks and Wikipedia projects were licensed under Creative Commons Attribution-ShareAlike 3.0 Unported license. An URI to this license is given in the list of figures on page 101. If this document is a derived work from the contents of one of these projects and the content was still licensed by the project under this license at the time of derivation this document has to be licensed under the same, a similar or a compatible license, as stated in section 4 b of the license. The list of contributors is included in chapter Contributors on page 99. The licenses GPL, LGPL and GFDL are included in chapter Licenses on page 105, since this book and/or parts of it may or may not be licensed under one or more of these licenses, and thus require inclusion of these licenses. The licenses of the figures are given in the list of figures on page 101. This PDF was generated by the $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ typesetting software. The $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ source code is included as an attachment (source.7z.txt) in this PDF file. To extract the source from the PDF file, we recommend the use of http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/ utility or clicking the paper clip attachment symbol on the lower left of your PDF Viewer, selecting Save Attachment. After extracting it from the PDF file you have to rename it to source.7z. To uncompress the resulting archive we recommend the use of http://www.7-zip.org/. The LATEX source itself was generated by a program written by Dirk Hünniger, which is freely available under an open source license from http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf. This distribution also contains a configured version of the pdflatex compiler with all necessary packages and fonts needed to compile the $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ source included in this PDF file.

Contents

1 Foreword 3
1.1 Parts One and Two 5
1.2 About the Pictures 6
2 The colour components 7
3 The transform and quantization 15
4 The compression and encoding 23
5 The decoding and drawing 27
6 Miscellaneous 29
7 Introduction 37
8 The Huffman coding 41
9 The header part 53
10 The guidelines and the implementation 59
11 Program for making a grey scale file 61
12 Program for drawing a grey scale picture 67
13 The two programs for a colour picture 75
14 When the width or the height is not divisible by 8 83
15 Appendix 1: Summary of the header segments 85
16 Appendix 2: Programs for calculating code lengths from the actual picture 87
17 References 95
18 Download programs 97
19 Contributors 99
List of Figures 101
20 Licenses 105
20.1 GNU GENERAL PUBLIC LICENSE 105
20.2 GNU Free Documentation License 106
20.3 GNU Lesser General Public License 107

1 Foreword

Figure 1 Drawing perfect but file compressed too much

Figure 2

Figure 3 File perfect but drawing incomplete

When the era of digital pictures began, a serious problem arose:

- A digital picture took up a great deal of storage space.

At that time computer memory was more expensive than it is now. The memory requirements were a very significant problem. Moreover, the electronic transmission of data was slow. A method had to be found by which the data could be compressed. The compression method could lose some information. It could be acceptable to introduce small changes in colour values if the overall impression of the picture were preserved. Sadly the solution to this problem is not, as one might hope, a nice piece of mathematical work in the classical sense. It involves experiments with the ability of the human eye to discern colour nuances compared with light intensity. Strange tables appear in the procedure.

The JPEG method was a result of collaboration. JPEG stands for "Joint Photographic Expert Group". The expert group was organized in 1986 and in 1992 issued a standard for their new image file format, JPEG. Since that time this format has been the most commonly used format for storing and transmitting photos.

The JPEG method is not difficult to understand. However, it is difficult to acquire knowledge about the method, mainly because it is not a fixed and final procedure but rather a principle. The number of articles that try to explain the method is immense. They often contain misunderstandings strongly suggesting the author himself has not made, or closely studied, a program that can produce a file or draw the picture from a file.

Hence this Wiki book.

1.1 Parts One and Two

This Wiki book is divided into two parts. Each is accompanied by programs. These are closely described and used to make illustrations and experiments.

- Part one explains the idea. We have altered the method a little so that it is easier to understand. Our alterations allow us to introduce variables in order to make interesting experiments. Our method is rather simple. Naturally, it does not compress as efficiently as the real JPEG method, but it is still surprisingly good. It can compress a file so that the data take up about 7 per cent of the original data of the picture. When you have read part one, you will have a good understanding of the principle of the JPEG method. If it was merely this you were looking for, you will not become very much wiser by reading part two.
- Part two is based on two articles:

1. The official document (from 1992) where the method is described in full and recommended as international standard;
2. The document (also from 1992) specifying the standard for the implementation of the method which has become the most commonly used - almost all JPEG pictures you will meet are in accordance with this implementation.

We explain all the things necessary for making a program that can produce efficiently compressed JPEG files. We provide a program that can draw the pictures of the most commonly used JPEG file types. We have also made a program that can show all the most
relevant information in the header part of a JPEG file. Some experience with this program can help you to understand the arrangement of a JPEG file. You can use this information (copy it or use it as guidelines), if you want to make your own JPEG compressor - for instance as a component of a program that can make computer graphics.

1.2 About the Pictures

All the pictures in this book were made with the program in part two - also those in part one, since the files made with the demonstration program are not true JPEG files.

2 The colour components

2.0.1 The BMP format

In the computer a colour is given by its composition of the three primary colours red, green and blue, and their shares are measured in bytes, that is, integers from 0 to 255 . Therefore a colour corresponds to a triple of bytes, called a $R G B$ triple. A picture is a rectangular matrix of RGB triples. If the picture is of width w and height h , the colour values (RGB triples) are indexed by the pairs (i, j), $\mathrm{i}=0, \ldots, \mathrm{w}-1, \mathrm{j}=0, \ldots, \mathrm{~h}-1$, so that the left top corner has coordinate set (0,0) (that is, the ordinate is measured downwards). The picture takes up 3 wh bytes, and it can be stored in a memory-block by storing the h horizontal lines consisting of 3 w bytes one after another. The procedure for showing the picture by transferring the memory-block (directly) to the screen is called a bitmap.
(In the bitmap procedure of Windows it is demanded that the number of bytes in the horizontal lines is divisible by 4 , this means that the line segments of the memory-block possibly must be increased by 1,2 or 3 bytes, usually filled with zeros.)
A picture can be stored permanently in a file consisting of the data bytes arranged in this way and supplied with a header specifying the type of the file and the dimensions of the picture. This is so for the BMP file format of Windows $(\mathrm{BMP}=$ Bit Map Picture). A BMP file begins with a header of 54 bytes. As the data in a BMP file lie precisely in the way used to draw a bitmap, the picture can be drawn directly from the reading of the file without involving RAM-memory and without the use of other than elementary arithmetic calculations.
(The header of a BMP file is divided up in 17 blocks consisting of one, two or four bytes. Two bytes determine an integer from 0 to $256^{2}-1=65535$, called a word, and four bytes determine an integer from 0 to $256^{4}-1=4294967295$, called a double word. The first two blocks of the BMP header are the bytes 66 and 77 , identified with the characters ' B ' and ' M ' and specifying the type of the file. Block 8 and 9 are double words stating the width and the height, block 10 and 11 are words, usually set to 1 and 24 ($=$ bit per colour), respectively, and block 7 is a double word usually set to 40 . The other blocks, except block 4 and 5 , which are words, are double words, and all these blocks can be set to 0 , as they usually are not read by the program reading the file.)

2.0.2 Data compression

The BMP file format and a memory-block to be transferred to the screen as a bitmap are easy tasks for the computer and for the programmer, but these ways of storing a picture take up a lot of memory: a picture of $1000 x 750$ pixels takes up $3 x 1000 x 750=2.2 \mathrm{Mb}$. This can be accepted provisionally in the working-up procedure of a picture or for storing of relatively few pictures where the highest possible quality is desired, but so much space is
unacceptable in folders with hundreds of pictures or in films or in transmissions from the internet. One would immediately think that it is impossible to get digitalized data to take up lesser space, because the material with the bits cannot be reduced like a photographic negative. But a digitalized data set consists of sequences of bits, and these can be replaced by sequences that are shorter - and if there are repetitions, the thing that repeats itself can be replaced by a sequence which acts as a symbol for its type and the number of repetitions. If the data are copies of the elements in some fixed set (of numbers, for instance), then we can assign to the elements of the set sequences of bits such that the elements which are used most frequently are assigned to the shortest sequences. Besides, if the elements of the data set are numbers of strongly varying size, we can, instead of allocating equal space to each number, try to remove the empty spaces between the numbers. This cannot of course be done without ceremony, since (in lack of a third bit) we must have a tool with which we can separate the sequences of bits corresponding to the numbers. However, we can insert sequences of bits acting as codes.

Only a non-negative integer can immediately be digitalized, namely by writing its binary digit expression:

$$
\mathrm{n}=\mathrm{c}_{\mathrm{m}} 2^{\mathrm{m}}+\ldots+\mathrm{c}_{2} 2^{2}+\mathrm{c}_{1} 2+\mathrm{c}_{0}
$$

where c_{0}, \ldots, c_{m} are bits: 0 or 1 - we order the sequence so that the most significant bit comes first. If the number is rational or real, we must in some way express it as the composite of two non-negative integers. The codes to be inserted can be chosen so that they are in one-to-one correspondence with the natural numbers, and such that the natural number assigned to a code is the number of digits of the following non-negative integer. The codes must be chosen so that the most frequently used natural numbers (stating number of digits) have the shortest codes, and moreover so that we can determine when a code ends.

When the data are to be used (in order to show a picture, for instance), the compressed data set is subjected to a decoding procedure, leaving a data set that is exactly as the original. In almost all image file formats there is a possibility for compressing the data in this way. Such tricks are of course used in the JPEG procedure, but in this procedure the data are modified before the compression: by first transforming the colour values and then reducing the new values by dividing them by certain numbers and rounding off. The last procedure is called quantization and it may introduce (small) deviations.

2.0.3 The RGB values

The basis colours are the pure colours, these are the "strongest" colours which have maximum saturation. The pure colours make up a cyclic colour scale:

Figure 4 The pure colours

Therefore a pure colour is determined by an angle. Every colour different from a grey scale colour is the result of mixing a uniquely determined pure colour with a grey scale colour. The pure colours are not of the same luminance: three of them have lesser luminance than the others, and these are the primary colours: pure red, pure green and pure blue, assigned
to the angles 0,120 and -120 degrees. A pure colour that is not primary lies between two primary colours, and is the result of mixing the nearest of these with part of the other. If we mix the three primary colours, we get white - the colour of maximum luminance. From this we can see that every colour is produced by mixing the three primary colours, each made more or less darker. This is the RGB representation. We usually measure the three amounts in bytes, so that 255 corresponds to the primary colour and 0 corresponds to black.
(We can find the pure colour associated to the colour C (different from a grey scale colour) in the following way: By subtracting the RGB values of C from white, we get the colour C1 with RGB triple ($255-\mathrm{R}, 255-\mathrm{G}, 255-\mathrm{B}$). If we assume that blue has most share in this colour, then $\mathrm{C} 1=\beta \mathrm{C} 2$, for some $\beta<=1$ and a colour C 2 for which blue has share 255 . By subtracting C2 from white, we get a colour C3, and if we assume that red has most share in this, then $\mathrm{C} 3=\alpha \mathrm{C} 4$, for some $\alpha<=1$ and a pure colour C 4 , for which red has share 255 and blue has share 0 . This is the pure colour associated to C , and we get C by mixing this pure colour with black according to α and with white according to β.)

2.0.4 The YCbCr values

There is, however, a drawback to the RGB representation of the colours: the three values are of equal significance. We would prefer a triple representation where one of the values (the first) was more significant than the two others, because then, in the quantization procedure, we could allow larger deviations in the two less significant components. Such a representation is easy to imagine, as the four pictures below show: we can let the first value in the triple be the average value of the three RGB values, thus expressing the intensity of the colour (and giving the corresponding grey scale picture), and let the two other values form the "colour additions". We imagine the colours (the RGB triples) as the integral points in a cube of side length 256 , having the three positive coordinate axes as sides, and its origin in the corner corresponding to black. In this cube the grey scales lie on the diagonal, and we take the diagonal as the first axis. We could let the two other coordinate axes be orthogonal to the diagonal and to each other, but in order to get a simple transform, we let them lie in the B-G-plane and the R-G-plane. Note that the new coordinate system means the two last colour values can be negative. We choose the units such that the first coordinate is measured in bytes and the two others are measured in signed bytes: integers from -128 to 127. The new coordinate triple is connected with the RGB triple by a linear transform.

We call the new representation the YCbCr values of the colour. Y stands for luminance (or luma) and C stands for chroma: Cb for chromatic blue and Cr for chromatic red. Our assumptions mean that there are parameters kb and kr , such that the linear transform and its inverse are given by:

$$
\begin{aligned}
& \mathrm{Y}=\mathrm{kr} \cdot \mathrm{R}+(1-\mathrm{kr}-\mathrm{kb}) \cdot \mathrm{G}+\mathrm{kb} \cdot \mathrm{~B} \\
& \mathrm{Cb}=\frac{1}{2}(\mathrm{~B}-\mathrm{Y}) /(1-\mathrm{kb}) \\
& \mathrm{Cr}=\frac{1}{2}(\mathrm{R}-\mathrm{Y}) /(1-\mathrm{kr}) \\
& \mathrm{R}=\mathrm{Y}+2(1-\mathrm{kr}) \cdot \mathrm{Cr} \\
& \mathrm{G}=\mathrm{Y}-(\mathrm{kb} \cdot(\mathrm{~B}-\mathrm{Y})+\mathrm{kr} \cdot(\mathrm{R}-\mathrm{Y})) /(1-\mathrm{kb}-\mathrm{kr}) \\
& \mathrm{B}=\mathrm{Y}+2(1-\mathrm{kb}) \cdot \mathrm{Cb}
\end{aligned}
$$

We see that if a colour is a grey scale colour, that is, if $R=G=B$, then Y is this number and Cb and Cr are zero. Mathematically, it would be natural to set kb and kr to $1 / 4$, because the transform then would get a simple and natural form:

$$
\begin{aligned}
& \mathrm{Y}=\mathrm{R} / 4+\mathrm{G} / 2+\mathrm{B} / 4 \\
& \mathrm{Cb}=-\mathrm{R} / 6-\mathrm{G} / 3+\mathrm{B} / 2 \\
& \mathrm{Cr}=\mathrm{R} / 2-\mathrm{G} / 3-\mathrm{B} / 6 \\
& \mathrm{R}=\mathrm{Y}+(3 / 2) \mathrm{Cr} \\
& \mathrm{G}=\mathrm{Y}-(3 / 2)(\mathrm{Cb}+\mathrm{Cr}) / 2 \\
& \mathrm{~B}=\mathrm{Y}+(3 / 2) \mathrm{Cb}
\end{aligned}
$$

However, in the JPEG implementation - which we are guided by here - the parameters kb and kr are set to 0.144 and 0.299 , and with these values the formulas become:

$$
\begin{aligned}
& \mathrm{Y}=0.299 \cdot \mathrm{R}+0.587 \cdot \mathrm{G}+0.114 \cdot \mathrm{~B} \\
& \mathrm{Cb}=-0.168736 \cdot \mathrm{R}-0.331264 \cdot \mathrm{G}+0.5 \cdot \mathrm{~B} \\
& \mathrm{Cr}=0.5 \cdot \mathrm{R}-0.418688 \cdot \mathrm{G}-0.081312 \cdot \mathrm{~B} \\
& \mathrm{R}=\mathrm{Y}+1.402 \cdot \mathrm{Cr} \\
& \mathrm{G}=\mathrm{Y}-0.3441 \cdot \mathrm{Cb}-0.71414 \cdot \mathrm{Cr} \\
& \mathrm{~B}=\mathrm{Y}+1.772 \cdot \mathrm{Cb}
\end{aligned}
$$

This means that the coordinate axes are: the diagonal, the line ($-0.34,1.77$) in the G-B-plane and the line $(1.40,-0.71)$ in the R-G-plane. As the two chromatic coordinates range in the interval $[-128,127]$, we must add 128 to them in order to get bytes, so that we can draw "projections" of the picture on the coordinate axes. Instead of the composition of the picture in pictures in red-, green- and blue-scales, we now get pictures in grey-scale, blue-green-scale and red-green-scale:

Figure 5 The original picture

Figure 6 The grey scale component

Figure 7 The blue-green component

Figure 8 The red-green component

As we want our numbers (integers) numerically as small as possible, we subtract 128 from the Y value, so that this, like the Cb and Cr , becomes a signed byte.

3 The transform and quantization

3.0.5 The cosine transform

With the YCbCr representation of the colours, we can say that the picture is composed of three pictures of which the first is more significant than the two others. These three pictures are called the components of the picture: the Y component, the Cb component and the Cr component. But we can continue this process of getting few important and more less important elements. Let us assume that we have a picture in grey scale, then we can imagine that we start with a picture of only one colour, namely the average colour of all the colours in the picture, and by additions introduce more and more variation in the picture, so that at the end we have the complete picture. Then it would possibly turn out, that we could omit some of the last operations, as we were not able to distinguish the new additions. However, the expansion (which we have in mind) of the colour function in a sequence of terms having smaller and smaller importance, works only for a quadratic picture. Therefore our picture must be divided up in squares. And these squares must be rather small, because the number of calculations grows with the fourth power of the side length of the squares, which means that if the small squares are made twice as large, the number of calculations becomes four times as large. On the other hand, if the small squares are too small, the effect of the procedure is diminished. The optimal side length of the small squares seems to be 8 - 12 pixels. In JPEG the picture is divided up in $8 x 8$-squares, but here we will see what happens if we let the squares have another side length than 8: we have arranged the program so that we can choose one of the numbers $2,3, \ldots, 24$ as side length s.

Thus, we perform a regular dividing up of the picture in sxs-squares. In JPEG this is done by starting at the left top corner and going from left to right line-wise from top to bottom, just as when we read a text. In our program for demonstration of the theory, we will however go through the picture in another way, namely coloumn-wise from left to right and zigzagging down and up, so that the squares continually have a side in common. We will assume that the width and the height of the picture are divisible by s, or rather: we will only use the part of the picture lying within the largest domain (starting at the left top corner) which can be divided regularily up in sxs-squares. The method we use to expand the colour function within a square, is the discrete cosine transform (DCT) defined as follows.

We assume that we have a quadratic picture (in grey scales) of side length N , and we assume that N is rather large, so that we can talk about a "real" picture. This picture is a NxN-matrix of colour values (bytes): $f(i, j), i, j=0,1, \ldots, N-1$ (remember that $(0,0)$ corresponds to the left top corner, so that the ordinate j is measured downwards). We want to express $f(i, j)$ in terms of pure double oscillations of the form $f_{u, v}(i, j)=c(i, u) \cdot c(j, v)$, $\mathrm{u}, \mathrm{v}=0, \ldots, \mathrm{~N}-1$, where the function $\mathrm{c}(\mathrm{i}, \mathrm{u})$ is given by:

$$
\mathrm{c}(\mathrm{i}, \mathrm{u})=\cos ((2 \cdot \mathrm{i}+1) \mathrm{u} \pi /(2 \mathrm{~N})) .
$$

Note that $f_{0,0}(i, j)$ is constant 1 and that the function $f_{u, v}(i, j)$ oscillates more the larger u or v are. We therefore want to express $f(i, j)$ as a double sum of N^{2} terms:

$$
f(i, j)=\sum_{u, v=0, \ldots, N-1} h(u, v) \cdot c(i, u) \cdot c(j, v)
$$

where the $h(u, v)$'s are (real) coefficients. The first term $(u=0$ and $v=0)$ being a constant function is the average value of the N^{2} numbers $f(i, j)$. The following terms oscillate more and more (as functions of i and j), and if we omit some of the last terms, we get an approximation to $f(i, j)$ that is free from the largest frequencies.

We can find the coefficients $h(u, v)$ of this series expression of $f(i, j)$ in the following way. Let the NxN-matrix (of real numbers) $g(u, v)(u, v=0,1, \ldots, N-1)$ be defined by:

$$
\mathrm{g}(\mathrm{u}, \mathrm{v})=(2 \lambda(\mathrm{u}) \lambda(\mathrm{v}) / \mathrm{N}) \sum_{\mathrm{i}}, \mathrm{j}=0, \ldots, \mathrm{~N}-\mathrm{c} \mathrm{c}(\mathrm{i}, \mathrm{u}) \cdot \mathrm{c}(\mathrm{j}, \mathrm{v}) \cdot \mathrm{f}(\mathrm{i}, \mathrm{j})
$$

where $\lambda(u)$ is 1 for $u \neq 0$ and $1 / \sqrt{ } 2$ for $u=0$. The matrix $g(u, v)$ is called the (forward) discrete cosine transform (DCT or FDCT) of the matrix $f(i, j)$. Note that $g(0,0)=\mathrm{N}$ times the average of the colour values. There is a formula which, from the NxN-matrix $g(u, v)$, brings us back to the original NxN-matrix $f(i, j)$, and it has an analogue look:

$$
\mathrm{f}(\mathrm{i}, \mathrm{j})=(2 / \mathrm{N}) \sum_{\mathrm{u}, \mathrm{v}=0, \ldots, \mathrm{~N}-1} \lambda(\mathrm{u}) \lambda(\mathrm{v}) \cdot \mathrm{c}(\mathrm{i}, \mathrm{u}) \cdot \mathrm{c}(\mathrm{j}, \mathrm{v}) \cdot \mathrm{g}(\mathrm{u}, \mathrm{v})
$$

As this formula has the desired form for the series expansion of $f(i, j)$, we see that the expansion is possible and that the coefficients $h(u, v)$ are given by $h(u, v)=(2 \lambda(u) \lambda(v) / N)$ $g(u, v)$. This formula for getting $f(i, j)$ from $g(u, v)$ is called the inverse discrete cosine transform (IDCT).

That the two formulas are inverse to each other, is easy to see if we take this formula, in which α and β are odd integers, for granted:

Now let us set $\mathrm{N}=280$, for instance, so that we consider a (grey scale) picture of 280×280 pixels. We transform the colour values $f(i, j)$ (which are bytes), and from the transformed values $\mathrm{g}(\mathrm{u}, \mathrm{v})$ (rounded off to integers which can be negative) we construct a picture, now in colours, because the numbers vary a lot and therefore cannot be measured in bytes. The new picture (also 280x280 pixels) could look like the picture to the left:

Figure 9 The cosine transformed picture

Figure 10 The reconstructed picture

After the transform, the "colour" values (in this example) vary from about -6000 to 24000, and the colouring is performed by a little trick: we have subtracted the minimum value from the values, so that they become non-negative, multiplied by $(\max -\min) / 65535$ and rounded off, getting whole numbers from 0 to $65535=256^{2}-1$. An integer in this interval can be written in the form $\mathrm{a}+256 \mathrm{xb}$, for bytes a and b , and to these we can associate the RGB triple ($0, \mathrm{~b}, \mathrm{a}$), for instance (the numbers min and max must be introduced in the program which reconstructs the picture, but this can be done by writing them in some of the free entries in the header of the BMP file). The picture to the right above is the reconstructed picture.

If, in the reconstruction procedure, we remove the terms for $u>N / 2$ or $v>N / 2$, so that we only make use of the mean fourth of the terms, we get a picture that is almost as the original - only a little blurred:

Figure 11 All the terms

Figure 12 One fourth of the terms

However, in the JPEG procedure terms are not actually removed: the coefficients are replaced by approximations of whose those for the high frequencies can deviate more from the original coefficients than those for the low frequencies. It is in this way the quantization procedure is carried out.

Now to the (colour) picture divided up in small sxs-squares. After the cosine transform, we have s^{2} numbers for each sxs-square and for each component (of the colour picture). From these numbers we can reconstruct the picture, and it is these numbers we are going to
write in the file, after compressing. But if we did this without quantization (that is, without making the numbers numerically smaller in some way), we would have gained nothing by the cosine transform. Besides the quantization, to be explained below, we can do another thing which makes some of the values smaller and which has a good effect: we can replace each first term of the transformed values (the average value $\mathrm{g}(0,0)$) by its difference from the preceding first term of the same type (that is, for the preceding square for the same component). The first term $\mathrm{g}(0,0)$ of the matrix $\mathrm{g}(\mathrm{u}, \mathrm{v})(\mathrm{u}, \mathrm{v}=0, \ldots, \mathrm{~s}-1)$ is called the $D C$ term, and the others $\mathrm{s}^{2}-1$ terms, $\mathrm{g}(\mathrm{u}, \mathrm{v}), \mathrm{u}>0$ or $\mathrm{v}>0$, are called the $A C$ terms. Thus, we replace each of the DC terms (for a given sxs-square and component) by its derivation from the DC term of the preceding sxs-square (and the same component).

3.0.6 Quantization

Without the quantization procedure, the only source of loss of information would be rounding off of real numbers in order to get integers. As the mean numbers ($\mathrm{g}(\mathrm{u}, \mathrm{v}$) for u or v near 0) are rather large, these errors are not significant: if we make the file now (that is, with cosine transform but without quantization) and apply a compression procedure (which is lossless), the picture which we can reconstruct from the file will be almost undistinguishable from the original, but it will still take up too much space. It is the quantization procedure that brings the size down and introduces deviations. By quantization we understand the procedure of making the coefficients of the expansion of $f(i, j)$ in pure double oscillations, that is, the numbers $\mathrm{g}(\mathrm{u}, \mathrm{v})$ from the cosine transform, smaller by dividing them by numbers $\mathrm{q}(\mathrm{u}, \mathrm{v})$ depending on (u, v) and then rounding-off to integers. When the picture is to be drawn from the file, we multiply by the numbers we have divided by. If for instance $g(u, v)$ $=135.6$ is divided by $\mathrm{q}(\mathrm{u}, \mathrm{v})=36$ and the result is rounded off, we get 4 , and when we multiply 4 by 36 , we get 144 . We have then introduced errors which could be insignificant, since they are not errors in the colour values but in the cosine transformed numbers, and the main terms, the $\mathrm{g}(\mathrm{u}, \mathrm{v})$'s for u and v near 0 , are quantized by much smaller numbers $\mathrm{q}(\mathrm{u}, \mathrm{v})$ than the less important terms, the $\mathrm{g}(\mathrm{u}, \mathrm{v})$'s for u or v not near 0 . Furthermore, as the numbers for the Y component have more significance than the numbers from the Cb and the Cr component, the cosine transformed numbers for these can bear to be quantized by larger numbers $q(u, v)$.
The 8 x 8 -matrices $\mathrm{q}(\mathrm{u}, \mathrm{v})(\mathrm{u}, \mathrm{v}=0, \ldots, 7)$ of the quantization numbers for the Y component and the two colour components used in the JPEG procedure are chosen according to experiments. Consequently, there are several bids for such tables. In part two you can see some typical tables. Well chosen numbers mean that we can compress more without damaging the picture, but we will always meet situations where a part of the picture has disturbing flaws that forces us to choose smaller quantization values. Usually a quality factor qf is introduced in the program that makes the file, so that the quantization numbers can be adjusted. For instance, we can arrange the dependence so that best possible quality - qf $=100$ - means that there is no quantization (all the quantization numbers are set to 1), and that $\mathrm{qf}=75$ means that the given quantization table $\mathrm{q}(\mathrm{u}, \mathrm{v})$ is used. The table $\mathrm{q}(\mathrm{u}, \mathrm{v})$ and the quality factor qf are applied again when the picture is drawn from the file. The quality factor must of course appear in the header of the file, whereas the tables only need to be in the programs that produce the file and draw the picture.

In our program we must have quantization tables for varying side length of the small squares (from 2 to 24), and we must therefore construct the tables mathematically - as simple as possible. We first choose the $\mathrm{q}(\mathrm{u}, \mathrm{v})$ values for $\mathrm{qf}=75$, and then find a formula so that all become 1 for $\mathrm{qf}=100$. Guided by the tables shown in part two, for $\mathrm{qf}=75$, we choose the following values for side length s and for the Y component and the colour components, respectively:

$$
\begin{aligned}
& q(u, v)=(s / 8) \cdot 12 \cdot\left(1+4 \cdot \sqrt{ }\left(u^{2}+v^{2}\right) / s\right) \\
& q(u, v)=(s / 8) \cdot 20 \cdot\left(1+5 \cdot \sqrt{ }\left(u^{2}+v^{2}\right) / s\right)
\end{aligned}
$$

We arrange the program so that we can have different quality factors for the Y component and the colour components. We adjust the numbers $\mathrm{q}(\mathrm{u}, \mathrm{v})$ according to qf in this way:

$$
\mathrm{q}(\mathrm{u}, \mathrm{v}) \sqrt{ }(100-\mathrm{qf}) / 5
$$

The left picture below (for side length $s=8$) is without quantization ($q f=100$), and the file takes up 60 per cent of the original BMP file. In the picture to the right $\mathrm{qf}=70$, and the file now takes up only 6 per cent of the original:

Figure $13 \quad$ qf $=100$

Figure $14 \quad$ qf $=75$

When we put the matrix of the quantization table and the matrix of the cosine transformed and quantized numbers into the file, we must arrange these numbers linearly in some way. We do this in such a way that the most important ones (those for u and v near 0) come first, namely by applying this zigzag principle:

Figure 15 The zigzag principle

If s is the side length of the square, then the zigzag value $\mathrm{m}\left(=1,2, \ldots, \mathrm{~s}^{2}\right)$ corresponding to the point (i, j) ($\mathrm{i}, \mathrm{j}=0,1, \ldots, \mathrm{~s}-1$) can be calculated with this program:
$k=i+j$
if $\mathrm{k}<\mathrm{s}$ then
begin

$$
\mathrm{l}=(\mathrm{k} *(\mathrm{k}+1)) \operatorname{div} 2
$$

if $\mathrm{k} \bmod 2=0$ then

$$
\mathrm{m}=1+\mathrm{i}+1
$$

else

$$
\mathrm{m}=\mathrm{l}+\mathrm{j}+1
$$

end
if $\mathrm{k}=\mathrm{s}$ then

$$
\mathrm{m}=(\mathrm{s}-2) *(\mathrm{~s}-2)+\mathrm{i}
$$

if $k>s$ then
begin

$$
\mathrm{k}=2 * \mathrm{~s}-1-\mathrm{k}
$$

$\mathrm{l}=\mathrm{s}^{*} \mathrm{~s}-(\mathrm{k} *(\mathrm{k}+1)) \operatorname{div} 2$
if $\mathrm{k} \bmod 2=0$ then
$\mathrm{m}=\mathrm{l}+(\mathrm{s}-\mathrm{i})$
else
$\mathrm{m}=\mathrm{l}+(\mathrm{s}-\mathrm{j})$
end

4 The compression and encoding

4.0.7 The compression of the file

For each sxs-square and for each of the three YCbCr coordinates (or components) we have, after the cosine transform and the quantization, a sequence of s^{2} integers ordered after the zigzag principle. In each of these sequences we have replaced the first number - the DC term - by its derivation from the preceding DC term (that of the preceding sxs-square and the same component). However, because most of these integers (when the square runs through the picture) are usually zero, it is expedient to introduce them into the file in a certain way, namely by letting every second integer be a true number and every other integer be a number of zeros (in an unbroken chain). The integers (in the new sequence) can be negative and of any size, and it is now our task to convert the integers to sequences of bits that are as short as possible. As a file consists of bytes, we must hereafter divide the resulting stream of bits into 8 -blocks and convert these to bytes.

Since the integers are allowed to be of any size, we must express each integer as a pair of two sequences of bits, the first being a sequence which in some way (possibly in a coded form) corresponds to a natural number stating the length of the second sequence, which is the binary digit expression of the number in question. The first sequence of bits could simply be the binary expression of the natural number, but then these sequences would have to have the same length, for instance 4 . As 4 bits can express natural numbers from 1 to 16 , and since by using no more than 16 bits we can express integers up to $2^{16}-1=65535$, this method can be used for a picture which is fairly varied in colours or which is not too large. If you write a JPEG program, you should begin with this method, and first introduce one of those described below when the program works, because it is a simple method which can compress an appropriate photo to 15 per cent of its size in BMP. But the 4 bits must be extended to 5 , if the program is to be able to handle all sorts of pictures, and even 4 bits are too many bits to spend on stating these lengths, since most of the lengths are rather short. It would be preferable if we had a method that allowed the length of the first sequences (of the pairs) to vary.

Our numbers (stating numbers of bits) are natural numbers, and we want to represent them by sequences of bits in such a way that the most frequently used numbers correspond to the shortest sequences, and we must have a method that makes us able to determine when a sequence terminates. The first description of a principle that can put the elements of a given set (in our case the set of the natural numbers) into a one-to-one correspondence with sequences of bits, so that the length of a sequence is inverse proportional to the frequency of use of the element, is Shannon and Fano's method of coding from 1949.

4.0.8 The coding of Shannon and Fano

Assume that we have a procedure the result of which is a long reeling-off of information, which is expressed by using the elements of a given set. We want this set replaced by a set consisting of sequences of bits, in such a way that the most used sequences are the shortest. To this end, you can do the following: divide the set up in two parts so that the elements in each part are used with approximately the same frequency. For the elements in the first part, let the sequences begin with 0 , and for the elements in the second part, let the sequences begin with 1 . Divide each of these two sets up in two parts, so that the elements in each part are used with approximately the same frequency, and let the next bit be 0 for the elements in the first parts, and 1 for the elements in the second parts, and so on.

In our case the set in question is the set of natural numbers, and the meaning of such a number is that it states the length of the binary digit expression of an integer. The frequencies of use of the natural numbers are in some way inverse proportional to their size, and we ought to theorize about the frequencies, or test a number of random pictures and take average values. However, in this case we will only make a guess determined by our desire to get a simple formula: we assume that (the elements of) $\{1,2,3\}$ come with the same frequency as the rest, that $\{1\}$ comes with the same frequency as $\{2,3\}$, that $\{4,5\}$ come with the same frequency as $\{6,7, \ldots\}$, that $\{6,7\}$ come with the same frequency as $\{8$, $9, \ldots\}$, and so on. With these assumptions, coding of the natural numbers will look like this:

1	00
2	010
3	011
4	100
5	101
6	1100
7	1101
8	11100
9	11101
10	111100
11	111101
12	1111100
13	1111101
etc.	

Note that for n larger than 3 , the number of 1 's before the first 0 is the whole part of $n / 2$ minus 1 , and after this 0 , there is only one bit more: 0 for n even and 1 for n odd. When (in the stream of bits) we know that some of the following bits form such a block of bits, we can easily determine when it terminates, as well as determine the corresponding natural number: if the first bit is 0 , a bit more will follow; if this is 0 , the number is 1 , if it is 1 , a
bit more will follow; if this is 0 , the number is 2 , if it is 1 , the number is 3 . If the first bit is 1 , we count the number of 1 's before the first 0 , and we know that the sequence terminates just after this 0 . We add 1 to the number of the 1 's and multiply this number by 2 . The natural number, then, is this number, if the last bit is 0 , and the succeeding number, if the last bit is 1 .

The integers that are the result of the cosine transform and the quantization (s^{2} integers for each sxs-square and each component), when the squares run through the picture, have been written in a certain way, namely so that every second integer is a true number and every other integer states a number (possibly zero) of zeros. Futhermore, we have written these integers as sequences of bits each having two parts: the first part is written in a coded form and corresponds to a natural number the purpose of which is to state the number of bits in the second part, being the binary digit expression of the integer in question. But since the integers (of the "true" type) can be negative, we must indicate this in some way. You probably think that we have to use an extra bit for this, however this is not necessary: the first digit of the digit expression (being the most significant digit) will always be 1 , and we can indicate that the number is negative by replacing this 1 by a 0 . The resulting stream of bits is ultimately divided up in 8 -blocks, which are written into the file as bytes - possibly extending the very last block (by 0 's or by 1 's) so that it becomes an 8 -block.

We have used this simple method of coding in our demonstration program, and as it can compress a well suited photo to $6-12$ per cent of its original size, we cannot here see any reason for choosing a method involving more machinery. Nonetheless, we will now say a little about the method of coding used by JPEG (and explained in details in part two).

4.0.9 The coding of Huffman

If we had spent more time studying frequencies, we could have got a more efficient program. However, the method of Shannon and Fano is not the best method. The most efficient method of coding is that of Huffman, invented in 1951. This method has been almost universal in the JPEG procedure. We will describe it in part two, and the reader will understand why we have avoided it here: it is not easy to describe and illustrate, and the encoding and the decoding demand more operations. Besides, in the JPEG procedure the DC numbers and the AC numbers are Huffman-coded in a different way, and the Y component and the colour components use different Huffman tables.
The coding method of Huffman can be proved to be the most efficient one, but this superiority presupposes that all the data are encoded in the same way, and this is not the case in the JPEG compression. Therefore, the JPEG committee prescribed, besides the Huffman coding, the so-called arithmetic coding, which can compress pictures a little bit more. However, the arithmetic coding is slower and it has not been used much - partly because it has been patented.

5 The decoding and drawing

The program that draws the picture from the file must do all the things that we have done in the opposite order. The width and the height of the picture and the quality factor(s) must be read from a header.

Let us sum up what must be done in the construction of the data part of the file:
Divide up the picture in sxs-squares
For each square:
For each point, convert the RGB values to YCbCr values
For the Y, Cb and Cr component, cosine transform the s^{2} numbers
Order these $3 \mathrm{xs}^{2}$ numbers after the zigzag principle
Replace the first number of an s^{2}-sequence (the DC term) by its derivation from the analogues number for the preceding square

Quantize the $3 \mathrm{x} \mathrm{s}^{2}$ numbers
In the resulting sequence of integers, replace each unbroken sequence of zeros by its length (possibly 0)
Write each integer as a sequence of bits (having two parts: a code and a digit expression), so that the sequences can be joined together into a continuous stream of bits.

After the header (stating the width and the height and the quality factor) has been read, we must convert each read byte of the file to an 8-block of bits, and then decode the resulting stream of bits. Each sequence of bits determining an integer consists of two parts. The first part forms a code, which is designed so that we can see where it ends. We decode it, and in this way get a natural number m . The second part of the sequence is the next m bits in the stream, and these m bits are the binary digit expression of an integer. However, if this sequence begins with 0 , this indicates that the integer is negative, and the 0 must be replaced by 1 . Every second integer (being non-negative) states a number of zeros, and we (imagine that we) write down these zeros. We do this until we have numbers enough to draw an sxs-square of the picture, namely $3 \mathrm{x} \mathrm{s}^{2}$ numbers. These $3 \mathrm{x} \mathrm{s}^{2}$ numbers are obtained by cosine transform and by quantization of the s^{2} colour values for the three components. They must first be de-quantized by multiplying by the numbers we have divided by. After this the very first number of each s^{2}-sequence (the DC term) must be added to the corresponding number for the preceding sxs-square, as these numbers represent differences. By the inverse zigzag procedure, each of the three s^{2}-sequences is converted to a sxs-matrix of numbers $\mathrm{g}(\mathrm{u}$, $\mathrm{v}), \mathrm{u}, \mathrm{v}=0,1, \ldots, \mathrm{~s}-1$, and to this matrix the inverse cosine transform is applied, giving a matrix $f(i, j), i, j=0,1, \ldots, s-1$, of colour values for the Y, Cb and Cr component. For each point (i, j) in the sxs-square, the three colour values $\mathrm{f}(\mathrm{i}, \mathrm{j})$ make up an YCbCr triple, which
is converted to a RGB triple, and the point in the picture corresponding to the point (i, j) in the square is coloured with these RGB values.

6 Miscellaneous

6.0.10 Leave out the last terms?

After quantization, the last of the s^{2} numbers of the sxs-matrices $g(u, v)$ are usually very small, and we could choose one of the numbers $\mathrm{r}=3,4, \ldots, \mathrm{~s}-1$ and omit those pairs (u , v) for which u or $v>=r$, so that we only had to deal with r^{2} numbers ($u, v=0,1, \ldots$, $r-1$). However, we do not win much by doing this, since r must be rather near s-1 and since the actual size of the number of zeros is not essential (30 zeros engage 8 bits and 12 zeros engage 7 bits). In the drawing procedure we could save time by restricting the inverse cosine transform to r^{2} numbers. We have done this in our (two) drawing programs of part two (we have set $\mathrm{r}=6$). But as such a program (for practical use) has to be written in assembly language, we do not win much by doing this either, since nowadays the picture is drawn pretty fast. But it is illustrative to see how many, or rather, how few of the cosine transformed numbers (the terms in the expansion of the colour value function) we actually need. We have therefore designed our drawing program so that we can enter a "number of terms" (the number r). In this picture (using 8 x 8 -squares) the number of terms is 8 and 4 , respectively:

Figure 168 terms

Figure 174 terms

Note that the size of the file depends strongly on the fact that most of the numbers before the compression are zeros, because every second number states a number of zeros. Therefore, if there were only few zeros, the most (every second) of these numbers (being zero in coded form $=000$), would unnecessarily occupy considerable space. Thus, if instead of dividing by a large number in the quantization, we divide by a small number (e.g. 0.1), we get the result that the file takes up twice as much space as in BMP format!

6.0.11 Why only 8×8-squares?

The choice (in the true JPEG procedure) of 8 as side length of the small squares, has nothing to do with the role of 8 in the computer, since the numbers are converted to sequences of bits of all sorts of lengths. The side length must not be too small, because then the effect of the cosine transform is lessened, and not too large either, because then the number of calculations may be too large: for an sxs-square, the total number of terms is s^{4}, because there are s^{2} points and for each point the formula has s^{2} terms. Therefore, if the side length is doubled, the number of calculations quadruples. The choice of 8 as side length was surely the most optimal when the JPEG procedure was introduced. However, nowadays, as the speed has multiplied, we could make better compression by choosing a larger side length (12, for instance), but it is too late to alter this and the benefit is not significant.

As regards the earlier mentioned quadratic picture of 280 pixels (to demonstrate the cosine transform), the number of calculations is 1225 times larger than if the picture were divided up in 8 x 8 -squares.

In the two pictures below we have used divisions up in 20x20- and 10x10-squares, respectively. The procedure is not as efficient for small divisions as for large ones. Both of the pictures
are quantized by approximately the same numbers, the first takes up 13 Kb , the second takes up 22 Kb :

Figure 18 20x20-squares

Figure 19 10x10-squares

6.0.12 The luminant contra the chromatic part

Let us see how it goes if we make large differences in the quantization of the luminant and the chromatic part of the top-most picture below. In the left-most picture the quality is low for the luminant part and high for the chromatic part. Therefore the pattern is disturbed but the colours seem correct. In the right-most picture it is the opposite: the pattern is correct but the colours are unfamiliar:

Figure 20 Original

Figure 21 Bad luminant part

Figure 22 Bad chromatic part

6.0.13 Difficult pictures

The JPEG procedure always introduces changes into the picture, but by choosing a high quality, these changes can be made microscopic. But they are there, and if you want to someday be able to work up a picture, you should not save it in JPEG format. Some pictures are less suited for JPEG compression than others, in the sense that the quality must be set high, if you want the changes to be completely invisible. But it is always possible to save in JPEG without visible changes, people will say. However, this is not necessarily true: it depends on the JPEG implementation. Our demonstration program can always make a file resulting in a (nearly) faultless picture, but this is because we handle the colour components in the same way as the Y component - we only quantize by different numbers, but we could refrain from quantization (setting the quality to 100). In the true JPEG procedure it is possible to reduce the size of the two colour "pictures" (the colour components) compared to the grey scale picture (the Y component). This can be done (for instance) by a previous dividing up of the two colour "pictures" in 2x2-squares and by regarding such a square as one pixel by taking the average value of the four colour values, so that the colour pictures become four times as small. This is done before the dividing up in 8 x 8 -squares, so that four 8 x 8 -squares of the Y component are combined with one 8 x 8 -square of the colour components. The reason is that the colours usually do not vary rapidly across the picture, and we can compress about 25 per cent more in this way. The procedure is called subsampling (of the colour components).

The next two pictures are made with our (home-made but) true JPEG program in part $t w o$, but with different settings. The picture is made by laying a picture for which every second pixel is green and every other pixel is transparent over another picture. Both pictures take up rather much space because of the strong changes from pixel to pixel. In the first picture the colour components are handed in the same way as the Y component, therefore the picture is correct. In the second picture subsampling of the colour components has been used, so that the colour values become average values, therefore the picture is more green:

Figure 23 Without subsampling

Figure 24 Subsampling

Note that not all JPEG compressing programs allow for the option between subsampling and non-subsampling the colour components.

For a picture in grey scale we have only the Y component, but as the contribution of the Cb and Cr components (after quantization) are small compared to the Y component, the grey scale version of a picture takes up almost as much space as the colour version - usually more than 90 per cent.

The compression should reach its extremum when the picture is of only one colour. This is the case for our demonstration program: the data part of such a 1000x1000-pixel picture take up only 14 bytes. But when we use the true JPEG procedure, the data part will take up 15.000 bytes - we will see why in part two.

6.0.14 Transparency

Some image formats can contain transparency, GIF and PNG, for instance, but not BMP and JPEG. GIF is especially suited for graphic representations and PNG is suited for pictures with objects laid over a simple background. They are both lossless, but a GIF picture can only contain 256 different colours (specified in the header), and, in spite of an effective
compression, a photo converted to a PNG file often takes up 75 per cent of the BMP file. As regards JPEG, in a FAQ-article you can read the following answer to the question "Can I make a transparent JPEG?": "No. JPEG does not support transparency and is not likely to do so any time soon. It turns out that adding transparency to JPEG would not be a simple task; read on if you want the gory details". And then we are told that in a GIF picture the transparency is introduced by letting an unused colour value mark out the transparent domain, but this method cannot be used in JPEG. It could be used in BMP, where one of the 16777216 possible colours could easily be missed for marking out a transparent domain; however not in JPEG, where the colour values are imprecise. Transparency will engage one bit for each point, and this new component could be subjected to the same procedure as the three YCbCr components. However, this method is rejected on the grounds that the JPEG procedure is not suited for sharp passages: if the boundary around a hole, through which strongly deviating colours appear, is to be reproduced satisfactorily, the cosine transformed numbers (of the transparency component) could only be quantized by small numbers, and then the file would take up quite some space. This is true, but the picture would still take up much lesser space than in PNG format, and besides, transparency is usually only for temporary use. It is easy to arrange the JPEG file such that it can support transparency.

However, as not much is won by cosine transform and quantization of the transparency component, these operations should be left out, and the bits for the transparency should be entered in the file in this way: we go along the horizontal lines by turns from left to right and from right to left, so that the pixels are adjacent, and in this sequence of bits we replace each unbroken interval of 0 's or 1 's by the number of the 0 's or 1 's (the sum of these numbers is just the width times the height). The resulting sequence of natural numbers is then coded, and can be written in the file before the colour data. By this method, the transparent domain becomes exactly as in the original picture. In the picture to the left the black is made transparent and the picture is laid over a blue background resulting in the picture to the right, and in spite of the very low quality of this picture, the transparent domain is the same:

Figure 25 Original

Figure 26 Transparency

The procedure of introducing transparency in a picture can take place via a picture in BMP format, for instance. The BMP format does not (at present) support transparency, but we can accompany the picture by a monochrome picture also in BMP format determining the transparent domain. A monochrome picture is a picture containing only two different colours, usually black and white. The RGB values of the two colours are stated in the header (or rather the header is prolonged with the bytes necessary for this information), and the data - one bit for each point - are written in the same way as the RGB values in an usual BMP file: row for row, but such that each 8-block of bits is converted to a byte (and such that the length of the rows of bytes is divisible by 4). This method is supported by the Windows bitmap drawing procedure: if we let the transparent domain in the picture with the colours be black, and let it be the white domain in the monochrome black-and-white picture, then Windows has procedures that can transfer the data of the two files directly to the screen, making a picture where the transparent domain is empty, so that we through this see the underlying - the desktop, for instance.

7 Introduction

7.0.15 The four distinct modes of operation

The JPEG committee intended that the method should be available in a number of variants and with a number of extensions:

1. The sequential DCT mode of operation, where the picture is scanned in the same way as in part one (but not in our zigzag way, column-wise from left to right, but line-wise from top to bottom, just as in reading).
2. The progressive DCT mode of operation, where the picture is displayed in its entirety concurrently with the transmission of the bitstream, at first imperfect and then gradually improving.
3. The lossless mode of operation, where the file is only compressed, with no data lost by cosine transforms or quantization.
4. The hierarchical (DCT or lossless) mode of operation, where the picture is stored at multiple resolutions for different uses (low-resolution screen, high-resolution printer, etc.), in such a way that the lower-resolution images are stored with supplementary data which can be added on to produce higher-resolution images as required.

The colour values are usually measured in bytes (8 -bit numbers), and in this case the precision of the (real) numbers in the calculations is set to 11 bit.

JPEG also offers extended precision, primarily intended for grey scale pictures, where the colour values instead of utilizing 8 bits use 12 bits (a range from 0 to 4095), and where the precision in the calculations is increased to 15 bit. Extended precision implies that the Huffman tables must go to size 15 (instead of 11) for the DC numbers and size to 14 (instead of 10) for the AC numbers. Furthermore, the numbers in the quantization tables can be words (from 0 to 65535) instead of bytes. As this possibility is rarely used, we will ignore it here.

For the baseline sequential DCT mode, that is, the non-extended sequential DCT mode, the method of coding is the Huffman coding with two tables for each component. For the extended modes you can choose between the Huffman coding with two or four tables for each component and the arithmetic coding.

One Mode Survives

Although four modes were intended, only the baseline sequential DCT mode has survived in widespread use.

- There is not much point in the progressive and the hierarchical mode nowadays, where a JPEG picture is transmitted and displayed fast.
- The benefits of the lossless mode seem too minor. Arithmetic coding can compress a little better than the Huffman coding, but it is slower and there have been patent-related problems.

Software Used in Researching this Book

Our account here, like our earlier account in part one, was accompanied by the writing of some programs. This time this was done only to ensure that we had properly understood the procedure. We will show pieces of these programs written in a Pascal-like language which should be easy for everybody to understand.

We first made a program that can convert a picture in BMP format to a grey scale picture in JPEG format. When this worked correctly, we extended it to colour pictures. Such a program, to be of use in production systems for JPEG files, must of course be written in assembly language and without making use of the co-processor (80-bit numbers) in the transforms. However, if the program is only for demonstration or if it is a part of a program producing computer graphic, it may be written in a high-level language and may use floating point operations. Our program which can read a JPEG file and draw the picture, for the baseline sequential DCT mode, was made in the same way. Since there are already many such programs, it does not need to be efficient. On the contrary, we have made it extra slow by using a "setpixel" procedure, because it is simpler - and because it gives the drawing a funny look.

The picture to the left below is made with our program in part one and the right with our program in this part. The quality is approximately the same. The first takes up 16.3 Kb and the second takes up 15.1 Kb (uncompressed they take up 228 Kb):

Figure 27 The demo program: 16.3 Kb

Figure 28 The true program: 15.1 Kb

7.0.16 Requirements Documents

"Digital Compression and Coding of Continuous-Tone Still Images - Requirements and Guidelines/Recommendation T.81" (1992), also called just T.81, is 180 pages long. If you are only interested in the baseline sequential DCT mode with Huffman coding, you do not have to read all 180 pages. The knowledge required of mathematics and programming is limited. You must already know the meaning of the mathematical terms, since these are not explained.

The purpose of T. 81 was to set a common standard for the core of the procedure. The specifics are described separately in standards for the implementation. These are in additional documents with titles like "JPEG File Interchange Format, Version ...". The only thing in our account that is in these implementation documents is the colour space designation: the $\mathrm{RGB} \rightarrow \mathrm{YCbCr}$ transform.

The formulas for this colour transform shown in part one can be found in version 1.02 from 1992 (7 pages). T. 81 only speaks of four components. It is implicit that only one component means that the picture is in grey scale, that three components can be the RGB components or most commonly the YCbCr components, and that the fourth component is for the possibility of transparency.

8 The Huffman coding

The main difference between our procedure in part one and the real JPEG procedure is that in part one we used a method of coding which is easy to understand and use, but which was not very efficient, partly because it was based on frequencies that were more determined by our desire for a simple coding procedure than by reality. JPEG uses the more efficient Huffman coding and frequencies that either are determined by the actual picture or by the average values for a number of typical pictures. Furthermore, we used the same coding procedure for all the numbers, whereas JPEG uses different coding for the DC and the AC numbers and also different coding for the Y component and for the two colour components this implying that the coding can demand tables of more than 450 numbers.

We will here choose Huffman tables based on typical frequencies, rather than on the frequencies measured by a pre-scanning of the actual picture. Therefore we only need to know how the Huffman encoding and decoding is to be performed once we have the necessary tables: we do not need to know how these tables are constructed on the basis of frequency. We will, however, show the procedure for the construction of the Huffman tables. It is a rather simple procedure, and the reader might want to make a program that measures frequencies and constructs the Huffman tables from the actual picture (we will show the programs in Appendix 2).
Assume that we have some values a1, a2, ..., an, which are attached to frequencies and which are to be equipped with code words so that the most frequently used values get the shortest codes. This can be done by constructing a so-called Huffman tree with the values as leaves with attached frequencies. Usually a Huffman tree can be constructed in several ways giving different code lengths. JPEG chooses the following:

We order the values according to decreasing frequency. For the two last values we add their frequencies, remove the two values and insert a node at the place among the remaining values where this frequency belongs (so that the frequencies are still decreasing - note that if the new frequency occurs among the others, the insertion can be made in more than one way). This is repeated until there is only one node left, and this will have frequency 1 . We have for each operation removed two things: either two values, or two nodes, or a value and a node. We construct the Huffman tree by placing the values (leaves) at the bottom and successively connecting with lines the pairs of removed things with the node that has replaced them.

If, for example, the values are the numbers $0,1,2,3$ and 4 , and their frequencies are 0.3 , $0.25,0.2,0.15$ and 0.1 (having sum 1), respectively, the removal procedure could look like this:

a1	0	0.3	0.3	0.45	0.55	1
a2	1	0.25	0.25	0.3	0.45	

a3	2	0.2	0.25	0.25
a4	3	0.15	0.2	
a5	4	0.1		

And the Huffman tree could look like this:

Figure 29 Huffman tree

The length of the Huffman code assigned to a value is the number of lines from the value to the last node (the top node with frequency 1). Once we know the lengths (of the codes) assigned to the values, we can form the code words, and this can be done in different ways: By using the Huffman tree, we can code for instance by writing 1 when we go to the right and 0 when we go to the left when we progress from the value towards the top node:

0	00
1	10
2	01
3	011
4	111

But we can also code without the Huffman tree, what is essential is the code lengths for the values. For instance, we can code so that the sequence of code words (identified by numbers via their binary digit expressions) is increasing: forming consecutive numbers when the code length is unaltered and adjoining zeros when the code length increases:

000
101
$2 \quad 10$
3110
4111
It is this last way of forming codes that is used by JPEG, because it is fast to decode.

In JPEG a code word must not consist of only 1's. We can avoid this by adding provisionally an extra value whose frequency is half (for instance) of the frequency of the last and least value (and finally remove a code from the codes of the largest length).
Furthermore, the length of a code word must not exceed 16. Therefore, if the Huffman tree leads to code lengths of more than 16 bits, the longest codes must successively be shortened. In our case, where we have imported the coding, we do not need to care about this problem, but we will briefly describe it: the longest code length is assigned to an even numbers of values. Therefore we can shorten the longest length by one bit (the last) and assign this code to one of the values, if we can find another (shorter) code to the other value. Assuming that the last (longest) codes with fewer bits have j bits, we can remove the last of these codes (of length j) and extend it by a 0 and a 1 , respectively, so that we get two new codes of length $\mathrm{j}+1$ which can replace the two removed codes.

The Huffman coding is performed from the (Huffman) values (occurring in the picture) and the code length assigned to each value (determined by its frequency). Therefore our point of departure is two lists of bytes: the first, called BITS, goes from 1 to 16 , and tells us, for each of these numbers, the number of codes of this code length. The second, called HUFFVAL, reels off, for each code length having a non-zero number of codes, the values to be coded with codes of this length (and as many values as there are codes of this length). The values in HUFFVAL are called the Huffman values, and they are ordered according to increasing code length (within a given code length the ordering is arbitrary).

In our program we use these lists for the DC numbers of the Y component:

BITS

0151111110000000

HUFFVAL

0

12345
6
7

8
9
10
11
and these lists for the DC numbers of the two colour components:

BITS

0311111111100000
HUFFVAL
012
3

4
5
6

7

8
9
10
11
The last lists tell that there are: 0 codes of length 1,3 codes of length 2 (coding the Huffman values 0,1 and 2), 1 code of length 3 (coding the Huffman value 3), etc.

Most of the numbers to be coded are AC numbers, and they are coded in another way than the DC numbers. Moreover, the values range a larger interval. As we import the Huffman coding, we must use lists containing all the possible values.

In our program we use these lists for the AC numbers of the Y component:

BITS

021332435544001125

HUFFVAL

12

3
0417
51833
4965
6198197
734113
2050129145161
83566177193
2182209240
365198114

130

91022232425263738394041425253545556575867686970717273748384 85868788899099100101102103104105106115116117118119120121122131 132133134135136137138146147148149150151152153154162163164165166 167168169170178179180181182183184185186194195196197198199200201 202210211212213214215216217218225226227228229230231232233234241 242243244245246247248249250
and these lists for the AC numbers of the two colour components:

BITS

021244347544012119
HUFFVAL
01
2
317
453349
6186581
797113
193450129
82066145161177193
9355182240
2198114209
10223652
225
37241
232425263839404142535455565758676869707172737483848586878889
9099100101102103104105106115116117118119120121122130131132133134
135136137138146147148149150151152153154162163164165166167168169
170178179180181182183184185186194195196197198199200201202210211
212213214215216217218226227228229230231232233234242243244245246 247248249250

If we call the number of Huffman values nhv, we have an array HUFFVAL[k] from $k=1$ to nhv arranging the Huffman values in their enumerated order. From the list BITS[i] we form an array HUFFSIZE $[\mathrm{k}]$ from $\mathrm{k}=1$ to nhv of the code lengths i for which the number $\operatorname{BITS}[\mathrm{i}]$ is non-zero, each i repeated BITS[i] times, so that the array HUFFSIZE $[\mathrm{k}]$ is parallel to HUFFVAL[k]. And we now construct an array HUFFCODE[k] from $k=1$ to nhv stating the Huffman code assigned to HUFFVAL $[\mathrm{k}]$. We identify a code with the integer having the bits of the code as binary digit expression (e.g. $110=6$), being aware that as the code can start with one or more zeros, the digit expression must start with zeros in order to get the right length (e.g. $011=3$).

The code words are generated in this way: assume that we have formed all the codes of length $<=\mathrm{n}$, and that the last formed code is the number c . Now assume that the next code length is $\mathrm{n}+\mathrm{i}$, then the next code is $\mathrm{c}=2^{\mathrm{i}} \cdot(\mathrm{c}+1)$ (the code got by joining i zeros to $c+1$), and the following codes are the consecutive numbers ($\mathrm{c}+1, \mathrm{c}+2, \ldots$), so many as there are codes of (the new) length $\mathrm{n}=\mathrm{n}+\mathrm{i}$. At the start c is set to 0 . Code number k , HUFFCODE $[k]$, is the code assigned to the Huffman value HUFFVAL $[k]$.

The encoding

For the encoding we reorder the lists (arrays) HUFFSIZE and HUFFCODE so that they become functions of the Huffman values (instead of functions of the order number), forming arrays EHUFSI[val] and EHUFCO[val]:

$$
\text { if val }=\operatorname{HUFFVAL}[k] \text { then }
$$

EHUFSI[val] = HUFFSIZE $[\mathrm{k}]$ and
EHUFCO[val] $=$ HUFFCODE[k]
Note that EHUFCO[val] is an array: EHUFCO[val][j] is the j-th bit of the code.
If we let the function $\operatorname{size}(\mathrm{n})$ (n integer) state the number of digits in the binary digit expression of n , and let $\operatorname{digit}(\mathrm{n})$ be the digit expression itself (so that $\operatorname{digit}(\mathrm{n})$ is an array of bits from 1 to $\operatorname{size}(\mathrm{n})$), the procedures for the construction of HUFFSIZE[k], HUFFCODE[k], EHUFSI[val] and EHUFCO[val] (and which are to be applied for each Huffman table) could look like the following:

$$
\begin{aligned}
& k=1 \\
& i=1 \\
& j=1
\end{aligned}
$$

1
if $\mathrm{j}<=\operatorname{bits}[\mathrm{i}]$ then
begin
huffsize $[\mathrm{k}]=\mathrm{i}$
$\mathrm{k}=\mathrm{k}+1$
$\mathrm{j}=\mathrm{j}+1$
goto 1
end
$\mathrm{i}=\mathrm{i}+1$
$j=1$
if $\mathrm{i}<=16$ then
goto 1
$\mathrm{nhv}=\mathrm{k}-1$
$\mathrm{k}=1$
$\mathrm{c}=0$
$\mathrm{i}=$ huffsize[k]
2

```
huffcode[k]= c
c = c + 1
if k=nhv then
    goto 4
k=k+1
if huffsize [k] = i then
    goto 2
3
    c = 2* c
    i = i + 1
    if huffsize[k] = i then
    goto 2
    else
    goto 3
4
    k=1
5
    val = huffval[k]
    e = huffsize[k]
    ehufsi[val] = e
    l = size(huffcode[k])
    dig = digit(huffcode[k])
    if l<e then
    for j=1 to e - 1 do
    ehufco[val, j] = 0
    for j = 1 to l do
    ehufco[val, e-1 + j] = dig[j]
    k=k+1
    if k <= nhv then
    goto 5
```

For the lists above for the DC numbers for the Y component, $\mathrm{nhv}=12$, HUFFSIZE[k] is the sequence 233333456789 , and $\operatorname{HUFFCODE}[\mathrm{k}]$ is the sequence $00,010,011$, $100,101,110,1110,11100,111000,1110000,11100000,111000000$. And for the functions EHUFSI[val] and EHUFCO[val], we have: EHUFSI[0] $=2$, EHUFSI[1] $=3$, EHUFSI[2] $=3$, etc., and $\mathrm{EHUFCO}[0]=00$, $\mathrm{EHUFCO}[1]=010$, $\mathrm{EHUFCO}[2]=011$, etc.
In the encoding we must for non-negative integer n know how many digits are in the binary expression of n . The function size(n) states this number, and it is extended to negative n by letting -n have the same size as n. It is given by $\operatorname{size}(0)=0$ and $\operatorname{size}(\mathrm{n})=\operatorname{trunc}(\ln (\operatorname{abs}(\mathrm{n}))$ $/ \ln (2)+0.000001)+1$ for $\mathrm{n}<>0$:

n	size
0	0
1	1
2,3	2
$4 \ldots 7$	3
$8 \ldots 15$	4
$16 \ldots 31$	5
$32 \ldots 63$	6
$64 \ldots 127$	7
$128 . .255$	8
$256 \ldots 511$	9
$512 . .1023$	10
$1024 . .2047$	11
etc.	

The integer the binary digit expression of which follows a Huffman code, can be negative, and (as explained in part one) we do not need an extra bit to indicate this: the digit expression will always begins with 1 and we can write 0 instead of the 1 . At the decoding of the sequence, the start with 0 will then show that the number is negative, and 1 followed by the rest of the digits will be the binary expression of the numerical value. However, in order to indicate that the number is negative, JPEG has chosen to replace all the digits by their opposite bit (forming the complement of the number). Therefore, if the digit expression begins with 0 , has val digits and corresponds to the (non-negative) integer n, then the negative integer is $-\left(2^{\mathrm{val}}-1-\mathrm{n}\right.$) (in T .81 it is said that if the sequence of digits begins with 0 and if the number of digits is T , then we get the numerical value by adding $2^{\mathrm{T}}+1$ to the number, but this is not correct, the number of course is obtained by subtracting it from 2^{T} $1=11 \ldots 1$ (T figures 1)).

The program for the function, $\operatorname{digit}(\mathrm{n})(\mathrm{n}<>0)$, giving the binary digit expression for the integer n , when n is positive, and the complement to the digit expression, when n is negative, could look like this:

$$
\mathrm{j}=\operatorname{size}(\mathrm{n})
$$

```
if \(\mathrm{n}<0\) then
    \(\mathrm{n}=\operatorname{round}\left(\exp \left(\mathrm{j}^{*} \ln (2)\right)\right)-1-\operatorname{abs}(\mathrm{n})\)
if \(\mathrm{j}=1\) then
    \(\operatorname{digit}[1]=\mathrm{n}\)
else
    begin
    \(j=j-1\)
        \(\mathrm{q}=\operatorname{round}(\exp (\mathrm{j} * \ln (2)))\)
    \(\mathrm{i}=0\)
    while \(\mathrm{i}<=\mathrm{j}\) do
        begin
        \(\mathrm{i}=\mathrm{i}+1\)
        \(\mathrm{l}=\mathrm{n} \operatorname{div} \mathrm{q}\)
        \(\mathrm{n}=\mathrm{n}-1\) * q
        \(\mathrm{q}=\mathrm{q} \operatorname{div} 2\)
        \(\operatorname{digit}[\mathrm{i}]=1\)
        end
    end
```

The DC numbers: For a DC number (the first number of the 64 -array) it is not the number itself, but the difference DIFF between the number and the preceding DC number which is to be coded, and it is not DIFF itself, but the number val of bits needed to express it: val $=$ size(DIFF). The code is then EHUFCO[val] and after this comes the val binary digits of DIFF: $\operatorname{digit}($ DIFF $)[\mathrm{j}], \mathrm{j}=1, \ldots$, val.

The AC numbers: The 63 AC numbers (of the 64 -array) are encoded in another way than the DC number. Here the size of the actual number (not a difference) is coded, and since there are usually many zeros in an AC array, the number of these in an uninterrupted row is combined with the size of the following non-zero AC number. If there are m zeros before the non-zero AC number n and if the size of n is k , we combine these two numbers (being half bytes) to the byte val $=\mathrm{m}^{*} 16+\mathrm{k}$, and it is this byte that is Huffman coded. This presupposes, however, that m and k really are half bytes (that is, $<=15$). k is always $<=11$, but there can be more than 15 zeros in a row, therefore, when a row of zeros has reached 15 and is followed by another zero, we must code these 16 zeros separately: the byte to be coded is val $=15^{*} 16+0=240$ (called ZRL). If the last of the 63 AC numbers is zeros, this is indicated by writing the Huffman code assigned to val $=0^{*} 16+0=0$ (called EOB, End-Of-Block). After the Huffman code has been written, the k binary digits of the non-zero AC number are written in the same way as for the DC (or rather the DIFF) numbers. Frequencies and code lengths are assigned to all the (Huffman) values val $=\mathrm{m}^{*} 16$ +k that are constructed in this way (or at least those values occurring in the picture). The
number of Huffman values (to be coded) can at most be the number of possible zeros (0,1 , $\ldots, 15$, that is, 16) times the number of possible sizes of the non-zero AC numbers (namely 10), and in addition to this product (160), the two extra values 240 and 0 . In total 162 Huffman values. As we here have chosen to import Huffman tables based on tests of a number of casual pictures, our AC Huffman tables most contain 162 values.

The decoding

For the decoding (when the file is read)(instead of the arrays EHUFSI[val] and EHUFCO[val]) we must have constructed beforehand three arrays from $\mathrm{k}=1$ to 16 : the minimum (first) code of length number k , MINCODE[k], the maximum (last) code of length number k , MAXCODE $[\mathrm{k}]$, and the number of MINCODE[k] in the sequence of the codes (and Huffman values), VALPTR $[\mathrm{k}]$ (value pointer):

$$
\begin{aligned}
& \mathrm{j}=0 \\
& \mathrm{k}=0 \\
& 0 \\
& \mathrm{k}=\mathrm{k}+1 \\
& \text { if } \mathrm{k}>16 \text { then } \\
& \text { goto fin } \\
& \text { if bits }[\mathrm{k}]=0 \text { then } \\
& \quad \text { begin } \\
& \quad \text { maxcode }[\mathrm{k}]=-1 \\
& \quad \text { goto } 0 \\
& \quad \text { end } \\
& \mathrm{j}=\mathrm{j}+1 \\
& \text { valptr }[\mathrm{k}]=\mathrm{j} \\
& \operatorname{mincode}[\mathrm{k}]=\text { huffcode }[\mathrm{j}] \\
& \mathrm{j}=\mathrm{j}+\mathrm{bits}[\mathrm{k}]-1 \\
& \text { maxcode }[\mathrm{k}]=\text { huffcode }[\mathrm{j}] \\
& \text { goto } 0
\end{aligned}
$$

fin
Note that when there are no codes of code length k, $\operatorname{MAXCODE}[k]=-1$, and MINCODE $[k]$ and VALPTR $[\mathrm{k}]$ are not defined.

Decoding then goes on as following: In the stream of bits, the first thing to do is to collect as many together that they form a code: we must determine where to stop. We start with k $=0, \mathrm{c}=0$ and $\operatorname{MAXCODE}[0]=-1$ (so that $\mathrm{c}>\operatorname{MAXCODE}[0]$), and for each read bit we join this to c and increase k by 1 , until $\mathrm{c}<=$ MAXCODE $[\mathrm{k}]$. Since we identify codes with
numbers, the joining means that we set $\mathrm{c}=2^{*} \mathrm{c}+$ bit for each new bit (called bit). The code then is c , and we shall find the Huffman value val assigned to c , and this is the Huffman value having the number $\mathrm{k}=\operatorname{VALPTR}[\mathrm{k}]+\mathrm{c}-\operatorname{MINCODE}[\mathrm{k}]$, so that val $=\operatorname{HUFFVAL}[\mathrm{k}]$:
$\mathrm{k}=0$
$\mathrm{c}=0$
while $\mathrm{c}>$ maxcode $[\mathrm{k}]$ do
begin
nbit
$\mathrm{c}=2^{*} \mathrm{c}+\mathrm{bit}$
$\mathrm{k}=\mathrm{k}+1$
end
val $=$ huffval $[\operatorname{valptr}[\mathrm{k}]+\mathrm{c}-$ mincode $[\mathrm{k}]]$
Here nbit is the procedure described later, which reads the next bit.

9 The header part

9.0.17 The markers

The header part of a JPEG file is divided into segments, and each segment starts with a marker, identifying the segment. Usually a JPEG file contains 7 different markers. A marker is a pair of bytes, the first is 255 and the second is different from 0 and 255 . We identify a marker by its second byte. Two markers stand alone (and thus do not open a segment): the marker which opens the file SOI (Start Of Image) $=216$ and the marker which closes the file EOI $($ End Of Image) $=217$. (There is one more type of marker which stands alone, but this is not used in the sequential DCT mode which we restrict ourselves to here: it marks a restart of a scanning and it is indexed by one of the numbers $0,1, \ldots, 7: \operatorname{RST} 0, \ldots$, RST7 $(\operatorname{ReSTart})=208, \ldots, 215)$. The other markers open a segment, and in this case the following pair of bytes ($\mathrm{b} 1, \mathrm{~b} 2$) states the length l of the segment (including these two bytes): $\mathrm{l}=\mathrm{b} 1^{*}$ $256+\mathrm{b} 2$. The following sequence of $1-2$ bytes is the content of the segment. There are the following types of segments (identified with their markers):

APP0, APP1, ..., APP15 (APPlication) 224-239
COM (COMment) 254
SOF (Start Of Frame) 192-207, except 196, 200 and 204
DHT (Define Huffman Table) 196
DQT (Define Quantization Table) 219
SOS (Start Of Scan) 218
(and a few more, which are not used here: DNL (Define Number of Lines = 220), DRI (Define Restart Interval $=221$), DHP (Define Hierarchical Progression $=222$), EXP (EXPand reference component $(\mathrm{s})=223$), DAC (Define Arithmetic Coding conditioning $(\mathrm{s})=204$), TEM (for TEMporary use in arithmetic coding $=1$) and besides some reserved markers: JPG (reserved for JPeG extensions $=200,240,241, \ldots, 253)$ and RES $($ REServed $=2, \ldots$, 191))

The first two - APP and COM - specify things that lie outside the proper JPEG procedure. Usually only a single APP segment is present (namely APP0), specifying the implementation. An APP segment can also contain information on camera type and on when the picture was taken. COM can state the program used to make the file, the chosen quality per cent, etc.

9.0.18 The frame segment SOF

The point of departure of the JPEG procedure is a "picture", and a picture can be defined as a (rectangular) matrix of either numbers, pairs of numbers, triples of numbers or quadruples
of numbers. That is, a picture is a matrix of arrays having one of the numbers 1-4 as length. A grey scale picture is a matrix of bytes. A colour picture is a matrix of RGB triples (of bytes) or of TCbCr triples (of signed bytes). A picture can thus be regarded as consisting of one or more (at most four) matrices of integers, and such a matrix is called a component of the picture. To each component is assigned a component identifier (byte): for instance 0 for the (one) component of a grey scale picture, and 0,1 and 2 for the three components of a colour picture.

The dimensions of the picture, the component identifiers and the order of the components are specified in the frame segment SOF, along with how the components are to be handled in relation to each other. Because the colours usually only alter slowly from place to place (and as we are not very good at distinguishing small alterations in colours), for the two colour components, we can, for instance, divide the picture up in 2×2-squares of pixels and take the average values, so that we regard such a square as one pixel and thus deal with colour pictures that are four times as small. We can also restrict ourselves to two pixels, either lying horizontally or vertically. A pair of numbers (Hi, Vi) for each component determines how the components are to be scanned in relation to each other. Hi and Vi can go from 1 to 4 (Hi and Vi must be rather small: the sum of their products must not exceed 10). Let H and V be the maximum Hi and Vi value, respectively. These maximum values are usually linked to the Y component, and this $((\mathrm{Hi}, \mathrm{Vi})=(\mathrm{H}, \mathrm{V}))$ means that the pixels are taken as they are: there are as many samples horizontally as the width of the picture, and there are as many horizontal lines as the height of the picture. If a (colour) component has the pair (Hi, Vi), the number of samples in a horizontal line is $(\mathrm{Hi} / \mathrm{H})$ times width, and the number of sampling lines is $(\mathrm{Vi} / \mathrm{V})$ times height, that is, small rectangles of $(\mathrm{H} / \mathrm{Hi}) \mathrm{x}(\mathrm{V} / \mathrm{Vi})$ pixels are collected (and regarded as one pixel). Usually $(\mathrm{Hi}, \mathrm{Vi})=(1,1)$ for the two colour components, and $(\mathrm{Hi}, \mathrm{Vi})=(1,1)$ or $(2,1)$ or $(1,2)$ or $(2,2)$ for the Y component. (Hi, Vi) $=(2,2)$ means that four colour pixels are collected and that "this" pixel is combined with four Y pixels. As the picture is divided up in $8 x 8$-squares, this means that four $8 x 8$-squares for the Y component are combined with one 8 x 8 -square for the colour components. The coded data (the coded 64-arrays) for the four Y squares are written in the file in the usual scanning order: from left to right along the lines, and from top to bottom. Next comes the coded data (the coded 64-arrays) for the two colour components. The analogue procedure when only two pixels are collected (horizontally or vertically). Such a part of the data stream arising from all the components and the collected 8 x8-squares is called a minimum coded unit (MCU).

This picture shows the drawing (pixel for pixel - and on an enlarged scale) when four Y component 8 x8-squares are collected - you are to image four $8 x 8$-squares in the centre, the two (uppermost) have been drawn, the third is being drawn:

Figure 30 The drawing

The two pictures below the following picture (which takes up 3.2 Kb) are this picture with every second vertical line drawn black, but scanned in different ways: for the colour components, two pixels are collected in the vertical and the horizontal direction, respectively (that is, $(\mathrm{Hi}, \mathrm{Vi})=(1,1)$ for the colour components, and $(\mathrm{Hi}, \mathrm{Vi})=(1,2)$ and $(2,1)$ for the Y component). In the first picture (which takes up 5.9 Kb) the colours are correct, in the second picture (which takes up 4.7 Kb) the colours are faded, because they are mixed with the black of the lines:

Figure 31 Original

Figure 32 Vertical subsampling

Figure 33 Horizontal subsampling

The frame segment SOF consists of the following bytes: the marker (255, b), where the byte b specifies the scanning mode. We assume here that $\mathrm{b}=192$, meaning the baseline sequential DCT mode; then the pair of bytes stating the length of the segment (including these two bytes), this pair is $(0,8+3 *$ the number of components); then a byte stating the number of bits of the colour values, here set to 8 (meaning that the colour values are bytes), but it is 12 for the extended mode; then a pair of bytes (b1, b2) stating the height $(=\mathrm{b} 1 * 256+\mathrm{b} 2)$ of the picture and a pair of bytes stating the width; and finally a byte stating the number of components (1-4), and for each component these bytes: the component
identifier (byte), $\mathrm{Hi}\left(\frac{1}{2}\right.$ byte) and $\mathrm{Vi}\left(\frac{1}{2}\right.$ byte) $)\left(\right.$ byte $\left.=\mathrm{Hi}^{*} 16+\mathrm{Vi}\right)$ and the quantization table destination selector (byte).

The pair $(\mathrm{Hi}, \mathrm{Vi})$ is here $(1,1)$ for the colour components and $(1,1),(1,2),(2,1)$ or $(2,2)$ for the Y component. The quantization table destination selector is one of the numbers $0-3$, for instance 0 for the Y component and 1 for the colour components.

9.0.19 The Huffman table segment DHT

Usually there are two Huffman table segments in the file for a grey scale picture and four for a colour picture: for each component the DC and the AC numbers are coded differently, and the Y component and the two colour components are coded differently. In a Huffman segment the information (after the marker and the pair of bytes stating the length) is arranged in this way: the first half byte is 0 if the Huffman tables are for DC numbers and 1 if they are for the AC numbers. The next half byte is the Huffman table destination identifier (0 or 1), for instance 0 for the Y component and 1 for the colour components (to be referred to in the scan segment SOS where the Huffman tables are specified). The following sequence of 16 bytes is the list BITS, stating for $i=1, \ldots, 16$ the number of codes of length i. And then comes the list HUFFVAL of Huffman values: for each code length different from zero, there will be just as many values as there are codes of this length. If we call the number of Huffman values nhv, the number of bytes in the segment (including the pair stating the length) is $19+$ nhv.

9.0.20 The Quantization table segment DQT

A quantization table is a 8 x 8 matrix of bytes ordered after the zigzag principle. There are usually different quantization tables for the Y component and for the colour components. In the annex "Examples and guidelines" of T. 81 you can find the following for respectively the Y component and the colour components:

1611101624	$40 \quad 51 \quad 61$
1212141926	$58 \quad 60 \quad 55$
1413162440	$57 \quad 69 \quad 56$
1417222951	$87 \quad 80 \quad 62$
1822375668	10910377
2435556481	10411392
49647887103	121120101
72929598112	0010399
17182447999	999999
18212666999	999999
24265699999	999999
47669999999	999999

9999999999999999
9999999999999999
9999999999999999
9999999999999999
It is mentioned that "If these quantization values are divided by 2 , the resulting reconstructed image is usually nearly indistinguishable from the source image". With our program "JPEG_File" you can see the tables for a picture (using the sequential DCT procedure and) given the name "pict". In our program to produce a (true) JPEG file we have chosen another table for the Y component than the above, namely the following used in an image editing program (IrfanView), by setting the quality to 70 per cent:
$107 \quad 6 \quad 1014243137$
$7 \quad 8 \quad 1116353633$
$8 \quad 8 \quad 101424344134$
10131731524837
1113223441656246
1421333849626855
2938475262737261
4355575967606259
A quantization table is specified in a DQT segment. A DQT segment begins with the marker $\mathrm{DQT}=219$ and the length, which is $(0,67)$. Then comes a byte the first half of which here is 0 , meaning that the table consists of bytes (8 bit numbers - for the extended mode it is 1 , meaning that the table consists of words, 16 bit numbers), and the last half of which is the destination identifier of the table (0-3), for instance 0 for the Y component and 1 for the colour components. Next follow the 64 numbers of the table (bytes).

9.0.21 The scan segment SOS

Just after the scan segment SOS come the encoded data of the picture, and the scan segment specifies the Huffman tables to be used for the components. The segment begins with the marker SOS $=218$ and the length, which is $(0,6+2 *$ the number of components). Then comes a byte stating the number of components (1-4), and then for each component two bytes, the first is the component identifier (defined in the frame segment) and the second is divided up in two parts, the first stating the destination selector of the DC Huffman table and the second the destination selector of the AC Huffman table (for instance 0 for the Y component and 1 for the colour components). The segment closes with three bytes which in our case (sequential DCT) are 0,63 and 0 (the last divided in two half bytes).

10 The guidelines and the implementation

10.0.22 The guidelines

The recommendation T. 81 closes with a list of patents that may be required in relation to implementation of the arithmetic coding and the hierarchical processes (and which is probably the reason why these methods are not more wide spread) as well as a bibliography. But just before these annexes is an annex called "Examples and guidelines" (which "does not form an integral part of this Recommendation/International Standard"). In this annex you can find the quantization tables shown above and the Huffman tables we have shown and used in our (true) JPEG programs. As regards the quantization tables it is said that: "These are based on psycho-visual thresholding and are derived empirically using luminance and chrominance and 2:1 horizontal subsampling. These tables are provided as examples only and are not necessarily suitable for any particular application. These quantization values have been used with good results on 8 -bit per sample luminance and chrominance images". The Huffman tables "have been developed from the average statistic of a large set of images with 8 -bit precision". The annex also includes procedures for generating the lists which specify a Huffman code table, namely: 1) the procedure mentioned above for the construction a Huffman tree on the basis of frequency and how to find the code lengths from the tree and count the number of codes of each length in order to get the list BITS (and possibly revise this list, so that it goes from 1 to 16); and 2) the procedure for sorting the Huffman values according to code length to get the list HUFFVAL. Because we imagine that we have imported these lists, we will not here go into details with these procedures we will show the programs in Appendix 2.

10.0.23 The implementation

The colour space designation, in our case the conversion from RGB triples to YCbCr triples (by linear transform $\mathrm{RGB} \rightarrow \mathrm{YCbCr}$ shown in part one), is not mentioned at all in T.81. Things like this belong to the concrete implementation of the JPEG method, and the implementation used is specified in one or more APP segments. These are two sorts of implementation: the interchange format, in which all the necessary tables are included in the file, and the abbreviated format, in which some of the tables (possibly all) are missing, because the application supplies them (possibly installed via the abbreviated format for table-specification, being a JPEG file without colour data).
Here we apply the interchange format specified in an APP0 segment having these bytes after the pair $(0,16)$ stating the length of the segement:
the identifier (= JFIF): the five bytes $74,70,73,70$ and 0 forming the string of characters "jif\#"
the version (pair): in our case (1,2)
units (byte): 0
Xdensity (pair): $(0,1)$
Ydensity (pair): $(0,1)$
Xthumbnail (byte): 0
Ythumbnail (byte): 0
The X- and Ydensity is respectively the horizontal and vertical pixel density measured in dots per inch (units $=1$) or dots per cm (units $=2$). We have chosen $\mathrm{X}=1$ and $\mathrm{Y}=1$ and no units (units $=0$) meaning that such a default print information is not present. X - and Ythumbnail is the width and the height of a thumbnail picture, respectively. We have set these numbers to 0 , meaning that such a picture is not stored in the header. In the opposite case the data of this (the RGB values, for instance) must be stored in the segment just after the above bytes, or in an APP segment following this APP segment.

If there are no APP segments, you get the default implementation, which is the one we use here. A description of this implementation can be found in "JPEG File Interchange Format/Version 1.02" (1992). There are no default quantization tables and Huffman tables. If some of these are missing, it must be because an abbreviated format is used, and the tables must appear in the program to open the file and referred to in an APP segment.

11 Program for making a grey scale file

Now for the program that can produce a grey scale JPEG file. We assume that the width and the height of the picture are divisible by 8 , and set wid $8=$ width div 8 and hei $8=$ height div 8. And we assume that the colour values are given in form of a memory-block pb of a bitmap, so that the colour value (byte) of the point having screen coordinate set (i, j) (i $=0, \ldots$, width $-1, \mathrm{j}=0, \ldots$, height- 1), is $\mathrm{pb}[($ height- $1-\mathrm{j}) *$ width +i$]$. More precisely: we assume that the picture is given as a colour picture in BMP format, and we use only the part of it lying within the largest domain that can be regularily divided up in $8 x 8$-squares, and we construct pb by taking the average of the RGB values.

We have written the markers (and their segments) in this order: SOI, APP, DQT, DQT, SOF, DHT, DHT, SOS (there are two of the DQT and DHT segments, because there are two quantization tables and two Huffman codings). The last segment - SOS - marks the beginning of the stream of the encoded data, and after this the file closes with the marker EOI. We have for the DC and for the AC numbers calculated the arrays EHUFSI[val] and EHUFCO[val][i] of the size of the code assigned to the Huffman value val and the code itself. In the program these arrays are called ehufsid[val] and ehufcod[val] for the DC numbers, and ehufsia[val] and ehufcoa[val] for the AC numbers.

For the 8 x 8 -square having coordinate set (i0, j 0) ($\mathrm{i} 0=0, \ldots$, wid8-1, $\mathrm{j} 0=0, \ldots$, hei8-1) and for the point in the square having coordinate set $(i, j)(i, j=0, \ldots, 7)$, the screen coordinate set is ($\mathrm{i} 0 * 8+\mathrm{i}, \mathrm{j} 0 * 8+\mathrm{j}$). For each 8 x 8 -square we have an 8 x 8 -matrix f of colour values (signed bytes - we have subtracted 128 from the original colour values (level shift) in order to get smaller numerical values), and by discrete cosine transform and quantization and round off, we get an $8 x 8$-matrix $g(u, v)$ of integers. This procedure (or rather, function) is called costrans $(\mathrm{f}): \mathrm{g}=\operatorname{costrans}(\mathrm{f})$. The inverse of the zigzag transform $(i z:(\mathrm{i}, \mathrm{j}) \rightarrow[1$, $\ldots, 64]$) is composed of two arrays $\mathrm{zx}[1]$ and $\mathrm{zy}[1]$ from 1 to 64 (so that the zigzag transform of ($\mathrm{zx}[1], \mathrm{zy}[1]$) is l), and by this g is converted to a 64 -array w (from 1 to 64). $\mathrm{w}[1]$ is the DC number, from this we subtract the preceding DC number (stored in the variable dc) getting the difference diff. We get the binary digit expression of an integer n by our function $\operatorname{digit}(\mathrm{n})$, and this array (from 1 to $\operatorname{size}(\mathrm{n})$) is inserted in the variable c array (from 1 to 10). The procedure that writes the bit (which is of the form $\mathrm{c}[\mathrm{j}]$, where c is either a code word or a digit expression) into the file (called fu) is denoted $w b i t(\mathrm{bit})$ - the (global) variables b0, b and q are used in this procedure. The programs for costrans and wbit are shown after the program for the scanning procedure:

$$
\begin{aligned}
& \mathrm{b} 0=0 \\
& \mathrm{~b}=0 \\
& \mathrm{q}=256 \\
& \mathrm{dc}=0
\end{aligned}
$$

```
for \(\mathrm{j} 0=0\) to hei8-1 do
    for \(\mathrm{i} 0=0\) to wid8 -1 do
    begin
        for \(\mathrm{j}=0\) to 7 do
        for \(\mathrm{i}=0\) to 7 do
            \(\mathrm{f}[\mathrm{i}, \mathrm{j}]=\mathrm{pb}\left[(\text { height }-1-(\mathrm{j} 0 * 8+\mathrm{j}))^{*}\right.\) width \(\left.+(\mathrm{i} 0 * 8+\mathrm{i})\right]-128\)
        \(\mathrm{g}=\operatorname{costrans}(\mathrm{f})\)
        for \(\mathrm{l}=1\) to 64 do
        \(\mathrm{w}[\mathrm{l}]=\mathrm{g}[\mathrm{zx}[1], \mathrm{zy}[1]]\)
        diff \(=\mathrm{w}[1]-\mathrm{dc}\)
        \(\mathrm{dc}=\mathrm{w}[1]\)
        \(\operatorname{val}=\operatorname{size}(\operatorname{diff})\)
        \(\mathrm{e}=\) ehufsid \([\mathrm{val}]\)
        \(\mathrm{c}=\) ehufcod[val]
        for \(\mathrm{j}=1\) to e do
        wbit(c[j])
        if diff \(<>0\) then
        begin
        \(\mathrm{c}=\operatorname{digit}(\operatorname{diff})\)
        for \(\mathrm{j}=1\) to val do
        wbit(c[j] \()\)
    end
\(\mathrm{r}=64\)
while ( \(\mathrm{r}>1\) ) and \((\mathrm{w}[\mathrm{r}]=0)\) do
    \(\mathrm{r}=\mathrm{r}-1\)
if \(r>1\) then
    begin
    \(\mathrm{l}=1\)
    \(\mathrm{m}=0\)
    while \(\mathrm{l}<\mathrm{r}\) do
        begin
        \(\mathrm{l}=\mathrm{l}+1\)
```

$$
\begin{aligned}
& \mathrm{n}=\mathrm{w}[1] \\
& \text { if } \mathrm{n}=0 \text { then } \\
& \text { begin } \\
& m=m+1 \\
& \text { if } m=16 \text { then } \\
& \text { begin } \\
& \mathrm{e}=\text { ehufsia[240] } \\
& \mathrm{c}=\text { ehufcoa[240] } \\
& \text { for } \mathrm{j}=1 \text { to e do } \\
& \text { wbit(c[j]) } \\
& \mathrm{m}=0 \\
& \text { end } \\
& \text { end } \\
& \text { else } \\
& \text { begin } \\
& \mathrm{k}=\operatorname{size}(\mathrm{n}) \\
& \mathrm{val}=\mathrm{m} * 16+\mathrm{k} \\
& \mathrm{e}=\text { ehufsia[val] } \\
& \mathrm{c}=\text { ehufcoa[val] } \\
& \text { for } \mathrm{j}=1 \text { to e do } \\
& \text { wbit(c[j]) } \\
& \mathrm{c}=\operatorname{digit}(\mathrm{n}) \\
& \text { for } \mathrm{j}=1 \text { to } \mathrm{k} \text { do } \\
& \text { wbit(c[j]) } \\
& \mathrm{m}=0 \\
& \text { end } \\
& \text { end } \\
& \text { end } \\
& \text { if } \mathrm{r}<64 \text { then } \\
& \text { begin } \\
& \text { e }=\text { ehufsia[0] } \\
& \mathrm{c}=\text { ehufcoa }[0]
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } \mathrm{j}=1 \text { to e do } \\
& \quad \operatorname{wbit}(\mathrm{c}[\mathrm{j}])
\end{aligned}
$$

end
end
The program for the function costrans (f), which cosine transform and quantize the 8 x 8 -matrix $\mathrm{f}[\mathrm{i}, \mathrm{j}]$ (of signed bytes) giving the 8 x 8 -matrix $\mathrm{g}[\mathrm{u}, \mathrm{v}]$ (of integers), is divided up in four cases: $u=0$ and $v=0, u=0$ and $v>0, u>0$ and $v=0$ and $u>0$ and $v>0$. If the 64 -array of the quantization table is called quant $[\mathrm{k}]$ and the zigzag function is called $i z(\mathrm{i}, \mathrm{j})$, we have beforehand calculated the matrix $c q[i, j]=4^{*}$ quant $[\mathrm{iz}(\mathrm{i}, \mathrm{j})](\mathrm{i}, \mathrm{j}=0,1, \ldots, 7$) (of integers) and the matrix $\operatorname{cs}[\mathrm{i}, \mathrm{j}]=\cos \left(\left(2^{*} \mathrm{i}+1\right)^{*} \mathrm{j}^{*} \mathrm{pi} / 16\right)(\mathrm{i}, \mathrm{j}=0,1, \ldots, 7)$ (of reals). The programs for the four cases of $g[u, v]$ can look like this:

$$
\begin{aligned}
& \mathrm{s}=0 \\
& \text { for } \mathrm{i}=0 \text { to } 7 \text { do } \\
& \text { for } \mathrm{j}=0 \text { to } 7 \text { do } \\
& \mathrm{s}=\mathrm{s}+\mathrm{f}[\mathrm{i}, \mathrm{j}] \\
& \mathrm{g}[0,0]=\operatorname{round}(\mathrm{s} /(2 * \operatorname{cq}[0,0])) \\
& \text { for } \mathrm{v}=1 \text { to } 7 \text { do } \\
& \text { begin } \\
& \mathrm{s}=0 \\
& \text { for } \mathrm{j}=0 \text { to } 7 \text { do } \\
& \quad \text { begin } \\
& \quad \mathrm{t}=0 \\
& \quad \text { for } \mathrm{i}=0 \text { to } 7 \text { do } \\
& \quad \mathrm{t}=\mathrm{t}+\mathrm{f}[\mathrm{i}, \mathrm{j}] \\
& \quad \mathrm{s}=\mathrm{s}+\mathrm{cs}[\mathrm{j}, \mathrm{v}] * \mathrm{t} \\
& \mathrm{end} \\
& \mathrm{~g}[0, \mathrm{v}]=\operatorname{round}(\mathrm{s} /(\mathrm{sqrt}(2) * \mathrm{cq}[0, \mathrm{v}])) \\
& \text { end } \\
& \text { for } \mathrm{u}=1 \text { to } 7 \text { do } \\
& \text { begin } \\
& \mathrm{s}=0 \\
& \text { for } \mathrm{i}=0 \text { to } 7 \text { do } \\
& \text { begin } \\
& \mathrm{t}=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } \mathrm{j}=0 \text { to } 7 \text { do } \\
& \mathrm{t}=\mathrm{t}+\mathrm{f}[\mathrm{i}, \mathrm{j}] \\
& \mathrm{s}=\mathrm{s}+\operatorname{cs}[\mathrm{i}, \mathrm{u}] * \mathrm{t} \\
& \text { end } \\
& \mathrm{g}[\mathrm{u}, 0]=\operatorname{round}(\mathrm{s} /(\operatorname{sqrt}(2) * \operatorname{cq}[\mathrm{u}, 0])) \\
& \text { end } \\
& \text { for } \mathrm{u}=1 \text { to } 7 \text { do } \\
& \text { for } \mathrm{v}=1 \text { to } 7 \text { do } \\
& \text { begin } \\
& \mathrm{s}=0 \\
& \text { for } \mathrm{i}=0 \text { to } 7 \text { do } \\
& \text { begin } \\
& \mathrm{t}=0 \\
& \text { for } \mathrm{j}=0 \text { to } 7 \text { do } \\
& \mathrm{t}=\mathrm{t}+\mathrm{cs}[\mathrm{j}, \mathrm{v}] * \mathrm{f}[\mathrm{i}, \mathrm{j}] \\
& \mathrm{s}=\mathrm{s}+\operatorname{cs}[\mathrm{i}, \mathrm{u}] * \mathrm{t} \\
& \text { end } \\
& \mathrm{g}[\mathrm{u}, \mathrm{v}]=\operatorname{round}(\mathrm{s} / \mathrm{cq}[\mathrm{u}, \mathrm{v}]) \\
& \text { end }
\end{aligned}
$$

Finally the procedure wbit(bit) that writes the bit "bit" (defined as a byte, since a program does not deal with bits) into the file fu. We get the bits from code words or from the digits of numbers, and before the insertion in the file these are collected in 8-blocks which are converted to bytes. We call the current byte b (initially set to 0), and if we have an integer q which starts with 256 and which before each insertion of the bit in b is divided by 2 , then the addition of the (new) bit means that b must be increased with bit * $\mathrm{q}: \mathrm{b}=\mathrm{b}+\mathrm{bit} * \mathrm{q}$. When $\mathrm{q}=1$, b is written into the file and q is again set to 256 . If $\mathrm{b}=255$ (8 figures 1), the writing must be followed by the writing of the zero byte b0 (8 figures 0)(byte stuffing), so that 255 (during the decoding) is not mistaken for the beginning of a marker. The writing procedure wbit could look like this:
procedure wbit(bit: byte)
begin
$\mathrm{q}=\mathrm{q} \operatorname{div} 2$
$\mathrm{b}=\mathrm{b}+\mathrm{bit} * \mathrm{q}$
if $q=1$ then
begin

$$
\begin{aligned}
& \text { write(fu, b) } \\
& \text { if } b=255 \text { then } \\
& \text { write(fu, b0) } \\
& b=0 \\
& q=256 \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

The program ends with this procedure that writes the last byte b if q is not set to 256 (indicating that b is not yet written), setting the rest of the bits of b to 1 (bit padding):

```
\(\mathrm{e}=\operatorname{size}(\mathrm{q})-1\)
\(\mathrm{p}=1\)
for \(\mathrm{i}=1\) to e do
    begin
    \(\mathrm{b}=\mathrm{b}+\mathrm{p}\)
        \(\mathrm{p}=2 * \mathrm{p}\)
    end
write(fu, b)
```

If the last byte b is 255 , it must be followed by the zero byte b0. At the very end we write the marker EOI $=(255,217)($ end of image $)$ and close the file.

12 Program for drawing a grey scale picture

Now to the program that can read a grey scale JPEG file and draw the picture. It is not required that the segments are written in a specific order (except that APP0 must come just after SOI), therefore the program that reads the file must seek after markers, and when such a marker is found (which is different from SOI and EOI), the program must read the following pair of bytes stating the length of the segment. During this reading we must continuously count the number of bytes read by adding 1 to a number r starting with 0 , and when all the segments are read (and the information is worked up for the arrays we make use of), go to the place $r=$ rhead where the data begin (just after the SOS segment - rhead is the number of the last byte in SOS).

The coded data are used bit by bit, but they lie in the file as bytes, as each 8-block of bits is converted to a byte when the file is written. Therefore we must have a procedure which gives us the next bit and reads the next byte every time 8 bits are used. We call this procedure $n b i t$, and the program for it is shown at the end in this section.

The program is arranged so that an $8 x 8$-square is drawn (via a "setpixel" procedure) every time the necessary bytes are read to form a 64 -array $\mathrm{w}[1], \mathrm{l}=1, \ldots, 64$. The reading is controlled by the number l, successively increased by 1 every time a number is inserted in $\mathrm{w}[\mathrm{l}]$. When $\mathrm{l}=64 \mathrm{w}$ is converted to an 8 x 8 -matrix via the zigzag function, and this 8 x 8 -matrix ($\mathrm{g}(\mathrm{u}, \mathrm{v}$)) is submitted to de-quantization and the inverse cosine transform giving the 8×8-matrix $f[i, j](i, j=0, \ldots, 7)$ of colour values (signed bytes made to bytes by adding 128 to them). If the 8 x 8 -square has the coordinate set ($\mathrm{i} 0, \mathrm{j} 0$) $(\mathrm{i} 0=0, \ldots$, wid $8-1, \mathrm{j} 0=0, \ldots$, hei8-1), the point to be coloured with the value $f[i, j]$ has the coordinate set ($\mathrm{i} 0 * 8+\mathrm{i}, \mathrm{j} 0 * 8$ +j . When the 8 x 8 -square is drawn, l is again set to 1 and the coordinate set ($\mathrm{i} 0, \mathrm{j} 0$) of the 8 x 8 -square is altered to the coordinate set of the next square, namely $\mathrm{i} 0=\mathrm{i} 0+1$ for $\mathrm{i} 0<$ wid8, and $\mathrm{i} 0=0$ and $\mathrm{j} 0=\mathrm{j} 0+1$ for $\mathrm{i} 0=\operatorname{wid} 8$.

The procedures that decode the DC and the AC codes are called decoded and decodea, respectively. They give a number val used by the procedure num to calculate a number m . The programs for these procedures are shown after the main program.
For $\mathrm{l}=1$ decoded is applied. It gives a number val stating the number of bits to be read next, and these make up the digit expression of a number m calculated by num, and m added to the preceding DC number (stored in the variable dc0) is the DC term of w : dc $=$ $\mathrm{m}+\mathrm{dc} 0, \mathrm{w}[1]=\mathrm{dc}$.

For $\mathrm{l}>1$ decodea is applied. It gives two half-bytes nz and val. The first half-byte nz states a number of zeros, and the second half-byte val states the number of bits to be read next if val >0. In this case (val >0), 1 is increased by 1 nz times (if $n z>0$), and for each of these l's $w[1]$ is set to zero. Then 1 is again increased by 1 , and the next val bits make up the digit
expression of a number m calculated by $n u m$ and this is $\mathrm{w}[1]$. If val $=0$, nz is either 15 or 0 . If $n z=15, l$ is increased by 116 times and for each of these l's $w[l]$ is set to zero. If $n z=0$, this indicates that all of the following AC terms are zero, that is, l is increased by 1 until l $=64$ and for each of these l's w[l] is set to zero.

When $l=64$ the array $\mathrm{w}[1]$ is completed and we can draw the 8 x 8 -square. In order to draw to picture faster, we will restrict the calculations (for each (i, j)) in the inverse cosine transform to $\mathrm{u}, \mathrm{v}=0, \ldots, 5$, so that we only use the first 36 of the 64 terms. Because of the uncertainty of the calculations, the colour values (after the addition of 128) can be smaller than 0 or larger than 255 , and may therefore have to be clambered.

The reading of the data part of the file and the drawing of each $8 x 8$-square take place in a loop (drawloop) that is set to stop when the end of the file is reached. The (global) variable r, increased by 1 for each time a byte is read from the file, starts with $r=$ rhead (the last byte of the header section):

$$
\begin{aligned}
& \mathrm{r}=\mathrm{rhead} \\
& \mathrm{i} 0=0 \\
& \mathrm{j} 0=0 \\
& \mathrm{l}=1 \\
& \mathrm{~s}=8 \\
& \mathrm{~b}=0 \\
& \mathrm{dc}=0 \\
& \mathrm{dc} 0=0 \\
& \text { drawloop } \\
& \text { if } 1=1 \text { then } \\
& \text { begin } \\
& \text { dc0 }=\text { dc } \\
& \text { decoded } \\
& \text { num } \\
& \text { dc }=\mathrm{m}+\mathrm{dc} 0 \\
& \text { w } 1]=\text { dc } \\
& \text { end } \\
& \text { decodea } \\
& \text { if val }>0 \text { then } \\
& \text { begin } \\
& \text { if nz }>0 \text { then } \\
& \text { for } \mathrm{i}=1 \text { to nz do }
\end{aligned}
$$

begin

$$
\begin{aligned}
& \mathrm{l}=\mathrm{l}+1 \\
& \mathrm{w}[\mathrm{l}]=0
\end{aligned}
$$

end
num
$1=1+1$
$\mathrm{w}[\mathrm{l}]=\mathrm{m}$
end
if $(\mathrm{nz}=15)$ and $(\mathrm{val}=0)$ then
for $\mathrm{i}=1$ to 16 do
begin

$$
l=1+1
$$

$$
\mathrm{w}[\mathrm{l}]=0
$$

end
if $(\mathrm{nz}=0)$ and $(\mathrm{val}=0)$ then
while $1<64$ do
begin

$$
\begin{aligned}
& \mathrm{l}=\mathrm{l}+1 \\
& \mathrm{w}[\mathrm{l}]=0
\end{aligned}
$$

end
if $\mathrm{l}=64$ then
begin
$l=1$
for $\mathrm{j}=0$ to 7 do
for $\mathrm{i}=0$ to 7 do
begin
$\mathrm{t}=\mathrm{w}[1] * \mathrm{cq}[0,0] / \operatorname{sqrt}(2)$
for $\mathrm{v}=1$ to 5 do
$\mathrm{t}=\mathrm{t}+\mathrm{cs}[\mathrm{j}, \mathrm{v}] * \mathrm{cq}[0, \mathrm{v}] * \mathrm{w}[\mathrm{iz}(0, \mathrm{v})]$
$\mathrm{s}=\mathrm{t} / \operatorname{sqrt}(2)$
for $\mathrm{u}=1$ to 5 do
begin

```
                    \(\mathrm{cq}[\mathrm{u}, 0] * \mathrm{w}[\mathrm{iz}(\mathrm{u}, 0)] / \operatorname{sqrt}(2)\)
                    for \(\mathrm{v}=1\) to 5 do
                    \(\mathrm{t}=\mathrm{t}+\mathrm{cs}[\mathrm{j}, \mathrm{v}] * \mathrm{cq}[\mathrm{u}, \mathrm{v}] * \mathrm{w}[\mathrm{iz}(\mathrm{u}, \mathrm{v})]\)
                    \(\mathrm{s}=\mathrm{s}+\mathrm{cs}[\mathrm{i}, \mathrm{u}] * \mathrm{t}\)
            end
            \(\mathrm{k}=\operatorname{round}(\mathrm{s}+128)\)
            if \(\mathrm{k}<0\) then
            \(\mathrm{k}=0\)
            if \(\mathrm{k}>255\) then
            \(\mathrm{k}=255\)
            \(\operatorname{setpixel}(\mathrm{i} 0 * 8+\mathrm{i}, \mathrm{j} 0 * 8+\mathrm{j}, \mathrm{k}, \mathrm{k}, \mathrm{k})\)
            end
    \(\mathrm{i} 0=\mathrm{i} 0+1\)
    if \(\mathrm{i} 0=\) wid8 then
    begin
        \(\mathrm{i} 0=0\)
        \(\mathrm{j} 0=\mathrm{j} 0+1\)
    end
    end
goto drawloop
```

The procedure decoded decodes the Huffman codes for the DC numbers $(l=1)$ and the procedure decodea decodes the Huffman codes for the AC numbers ($1>1$). They use the arrays mincode $[k]$, maxcode $[k]$, valptr $[k]$ and huffval $[k]$, constructed from the Huffman tables. For the Huffman tables for the DC numbers these arrays are called mincoded $[\mathrm{k}]$, maxcoded $[\mathrm{k}]$, valptrd $[k]$ and huffvald $[k]$, and for the Huffman tables for the AC numbers they are called mincodea $[\mathrm{k}]$, maxcodea $[\mathrm{k}]$, valptra $[\mathrm{k}]$ and huffvala $[\mathrm{k}]$. The procedures decoded and decodea contain the procedure nbit that reads the next bit. The program for decoded can look like this:

$$
\begin{aligned}
& c=0 \\
& j=0
\end{aligned}
$$

while $\mathrm{c}>\operatorname{maxcoded}[\mathrm{j}]$ do
begin
nbit
$\mathrm{c}=2^{*} \mathrm{c}+\mathrm{bit}$

$$
\mathrm{j}=\mathrm{j}+1
$$

end

$$
\operatorname{val}=\text { huffvald[valptrd[j] }+\mathrm{c}-\operatorname{mincoded}[\mathrm{j}]]
$$

The program for decodea is analogues, except that the number val (byte) now is divided up in two half-bytes: $\mathrm{nz}=$ val div 16 and val $=$ val $-\mathrm{nz} * 16$ - the first half-byte nz stating a number of zeros.

The number val produced by decoded and decodea states the number of bits to be read next, and these bits form the digit expression of the number $\mathrm{m} . \mathrm{m}$ is calculated via the procedure num, which also makes use of the next bit procedure nbit. However, if the first bit read is zero, this indicates that the number m is negative and its numerical value is then the binary complement of the calculated m , that is, $\mathrm{m}=-(\mathrm{q} 0-1-\mathrm{m})$, where $\mathrm{q} 0=2^{\text {val }}$ (the reading of the first bit bit1 is controlled by the number z):

$$
\begin{aligned}
& \text { procedure num } \\
& \text { begin } \\
& \text { q0 }=\operatorname{round}\left(\exp \left(\mathrm{val}^{*} \ln (2)\right)\right) \\
& \mathrm{q}=\mathrm{q} 0 \\
& \mathrm{z}=0 \\
& \mathrm{~m}=0 \\
& \text { while } \mathrm{q}>1 \text { do } \\
& \text { begin } \\
& \mathrm{q}=\mathrm{q} \text { div } 2 \\
& \text { nbit } \\
& \text { if } \mathrm{z}=0 \text { then } \\
& \text { begin } \\
& \quad \text { bit1 }=\text { bit } \\
& \mathrm{z}=1 \\
& \text { end } \\
& \mathrm{m}=\mathrm{m}+\text { bit } * \mathrm{q} \\
& \text { end } \\
& \text { if bit1 }=0 \text { then } \\
& \mathrm{m}=-(\mathrm{q} 0-1-\mathrm{m}) \\
& \text { end }
\end{aligned}
$$

Now to the procedure nbit, which produces the next bit, called bit, in the bit stream, and which is used in the procedures decoded, decodea and num. The next bit is taken from an array c[i] from 1 to 8 , which is produced every time 8 bits are used: then a new byte b is
read, and c is the digit expression of $\mathrm{b}: \mathrm{c}=\operatorname{digit}(\mathrm{b})$ - the program for digit is shown below. The reading of the bits is managed by a (global) variable s, which starts with 0 , and in each application of nbit is increased by 1 , and then set to 0 again when $\mathrm{s}=8$ (we must start with $s=8$, so that the first byte can be read). However, since in the writing of the file we have written a zero byte after each byte that is 255 , when reading we must skip the next byte when a byte is 255 . An exception is when the byte after 255 is 217 , because then we have reached the pair $(255,217)$, which is the marker EOI (end of image), and then the file must be closed and the drawing procedure set to stop (by altering a variable z from 0 to 1 and going to mainloop, the "getmessage" loop of the window). The program for nbit could look like this:

```
procedure nbit;
```

begin
if $s=8$ then
begin
$\mathrm{r}=\mathrm{r}+1$
$\operatorname{read}(f u, b)$
if $\mathrm{b}=255$ then
begin
$\mathrm{r}=\mathrm{r}+1$
$\operatorname{read}(f u, b 1)$
if $\mathrm{b} 1=217$ then
begin
close(fu)
$\mathrm{z}=1$
goto mainloop
end
end
$\mathrm{c}=\operatorname{digit}(\mathrm{b})$
$\mathrm{s}=0$
end
$\mathrm{s}=\mathrm{s}+1$
bit $=\mathrm{c}[\mathrm{s}]$
end

Finally, the program for function $\operatorname{digit(b),~giving~the~digit~expression~of~the~byte~b.~This~}$ function is the same as the function of the same name used in the writing procedure, apart
from the fact that it now applies only to bytes and that its array of bits go from 1 to 8 , so that it can start with zeros:

$$
\begin{aligned}
& \mathrm{q}=128 \\
& \mathrm{i}=0 \\
& \text { while } \mathrm{i}<8 \text { do } \\
& \text { begin } \\
& \mathrm{i}=\mathrm{i}+1 \\
& \mathrm{j}=\mathrm{b} \operatorname{div} \mathrm{q} \\
& \mathrm{~b}=\mathrm{b}-\mathrm{j}^{*} \mathrm{q} \\
& \mathrm{q}=\mathrm{q} \text { div } 2 \\
& \operatorname{digit}[\mathrm{i}]=\mathrm{j} \\
& \text { end }
\end{aligned}
$$

13 The two programs for a colour picture

Two more components now need to be written in the file. The RGB colour values are converted to YCbCr colour values by the linear transform $\mathrm{RGB} \rightarrow \mathrm{YCbCr}$, so that the three components are the Y component, the Cb component and the Cr component. But as explained in the section "The frame segment SOF" the components can be subsampled in relation to each other, and this subsampling is determined by pairs (Hi, Vi) $(\mathrm{i}=1,2,3)$ for the three components. Usually the Y component is not submitted to subsampling and the two colour components are subsampled in the same way. We assume here that this is the case. It means that $(\mathrm{Hi}, \mathrm{Vi})=(1,1)$ for the colour components, and that $(\mathrm{H} 1, \mathrm{~V} 1)$ is either $(1,1),(2,1),(1,2)$ or $(2,2)$. We assume first that $(\mathrm{H} 1, \mathrm{~V} 1)=(1,1)$ and then that (H1, $\mathrm{V} 1)=(2,2)$, and we formulate the last case so that the formulas and the programs can be applied unaltered to the all the four cases.
$(\mathbf{H} 1, \mathrm{~V} 1)=(\mathbf{1}, \mathbf{1})$ In this case there is no subsampling. For each 8 x 8 -square we have for each component an encoding and writing procedure that is equal to the one used for the grey scale picture - the only difference is that we use different quantization and Huffman tables for the Y component and the two colour components. The writing into the file is controlled by a number cp , which is 1,2 and 3 , respectively, for the Y component, the Cb component and the Cr component.
Like in the grey scale case, the reading of the file and the drawing of the picture go on in a loop, but since an $8 x 8$-square cannot be drawn until three sequences of data are read, we must store things, namely the 64 -arrays that are the result of each reading. We let the reading be controlled by a number cp : for $\mathrm{cp}=1,2$ and 3 , the data of respectively the Y component, the Cb component and the Cr component are used to form 64 -arrays w which are stored in the variables wy, wb and wr. Then cp is set to 4 , and when $\mathrm{cp}=4$ the arrays wy, wb and wr are converted to 8 x 8 -matrices and submitted to de-quantization and the inverse discrete cosine transform, giving three 8×8-matrices (of integers) which can be regarded as an 8 x 8 -matrix of YCbCr triples. The YCbCr triples are converted to RGB triples by the inverse of the RGB $\rightarrow \mathrm{YCbCr}$ transform. If we set wid $8=$ width div 8 and hei $8=$ height div 8 , the 8 x 8 -squares can be assigned coordinate sets ($\mathrm{i} 0, \mathrm{j} 0$), $\mathrm{i} 0=0, \ldots$, wid8-1, $\mathrm{j} 0=0$, ..., hei8-1, and the point to be coloured with the RGB triple (in the $8 x 8$-matrix) having coordinate set (i, j) ($\mathrm{i}, \mathrm{j}=0, \ldots 7$), has coordinate set ($\mathrm{i} 0 * 8+\mathrm{i}, \mathrm{j} 0 * 8+\mathrm{j}$) in the picture.
$(\mathbf{H} 1, \mathbf{V} 1)=(2,2)$ This means that, for the two colour components, four pixels forming a 2×2-square are regarded as one pixel by taking the average value of the colours. For a colour component an 8×8-square therefore corresponds to a 16×16-square in the picture, and it must be combined with four 8 x 8 -squares for the Y component. The encoded data for these four 8 x 8 -squares are written in the file one just after the other in the usual order: left-to-right and top-to-bottom. After this the data for the $8 x 8$-square for the two colour components are encoded and written in the file, and then we go to the next 16×16-square. We now assume that the width and the height of the picture are divisible by 16 . We set wid8
$=$ width $\operatorname{div}\left(\mathrm{H} 1^{*} 8\right)$ and hei8 $=$ height div (V1*8), so that the rectangles of the dividing up of the Y component (in our concrete case, the 16 x 16 -squares) have coordinate sets (i0, j 0), $\mathrm{i} 0=0, \ldots$, wid8-1, $\mathrm{j} 0=0, \ldots$, hei8-1.

This procedure (the making of the file) is straightforward, but the converse procedure, the reading of the file and drawing of the picture is not as simple, because things must be stored and combined in the right way. The result of a reading and decoding is a 64 -array of numbers, and such six arrays must now be stored before we can draw a 16×16-square: four arrays for the Y component and one array for each of the colour components. In order to have a uniform way of combining (for $(\mathrm{H} 1, \mathrm{~V} 1)=(1,1),(2,1),(1,2)$ or $(2,2)$) we let a 64 -array for the Y component be a matrix of 64 -arrays, namely (under our present assumption that $(\mathrm{H} 1, \mathrm{~V} 1)=(2,2)$) a 2 x 2 -matrix of 64 -arrays (or equivalent: a 64 -array of $2 x 2$-matrices). We call this wy, so that the four 64 -arrays are wy $[0,0][1]$, wy $[1,0][1]$, wy $[0$, $1][1]$ and wy[1, 1][1] $(l=1, \ldots, 64)$.

As before, the decoding is controlled by a number cp that is 1,2 and 3 for the readings of the three components, and 4 for the calculations and the drawing of the $16 x 16$-square.
$\mathbf{c p}=1$ The reading procedure for $\mathrm{cp}=1$ is run through four times: for $(\mathrm{i} 1, \mathrm{j} 1)=(0,0)$, $(0,1),(1,0)$ and $(1,1)$, respectively. Such a pair (i1, j 1$)$ is denoted pos, and the function that finds the next pair pos is called nextpos(pos), so that if $\operatorname{pos}=(1,1)$ then nextpos(pos) is $(0,0)$. The program for nextpos is shown below.

A DC number dcy (for the Y component) is found by adding the number m (found by decodedy (giving the number val) followed by num (calculating m from val)) to the previous DC number stored in dcy0 - that for the previous pair pos, which is $(1,1)$ when pos $=$ $(0,0)$ (for the next 16×16-square). The four DC numbers for the Y component make up a 2×2-matrix wy $1[\mathrm{i} 1, \mathrm{j} 1](\mathrm{i} 1, \mathrm{j} 1=0,1)$ - denoted wy1 because it is the DC term of the 64 -array wy of 2×2-matrices: wy $[1]=$ wy1.

The 63 AC numbers (for the (i1, j 1$)$) are found by decodeay (giving the numbers nz and val) followed by the procedure formac shown below. The result of formac is an array $\mathrm{w}[1], \mathrm{l}=2$, $\ldots, 64$ (with the first term unspecified), and this array is stored in wy[i1, $j 1]:$ wy $[i 1, j 1]=w$.

The $D C$ term of $w y[i 1, j 1]$ is $w y 1[i 1, j 1]$, but the fixing of this can wait until $c p=4$: wy $[i 1$, $\mathrm{j} 1][1]=\mathrm{wy} 1[\mathrm{i} 1, \mathrm{j} 1]$.

After the readings for the four $8 x 8$-squares (making up the 16×16-square) are finished, the pair (i1, j 1$)$ is set to $(0,0)$, and when $(\mathrm{i} 1, \mathrm{j} 1)=(0,0), \mathrm{cp}$ is set to $2(=\mathrm{cp}+1)$ for the reading of the Cb colour component 8 x 8 -square corresponding to the Y component 16 x 16 -square.
$\mathbf{c p}=\mathbf{2}, \mathbf{3}$ The forming of arrays wb and wr for the two colour components is similar to the one applying to the grey scale procedure. For wb (for instance) it goes on in this way: The DC number dcb is found by adding the number m (found by decodedc (giving the number val) followed by num (calculating m from val)) to the previous DC number stored in dcb0. Then the 63 AC numbers are found by decodeac (giving the numbers nz and val) followed by the procedure formac shown below. The result of formac is an array w $[1], 1=2, \ldots, 64$ (with the first term unspecified), and this array is stored in wb : $\mathrm{wb}=\mathrm{w}$. The DC term of wb is dcb, but the fixing of this can wait until $\mathrm{cp}=4$: $\mathrm{wb}[1]=\mathrm{dcb}$.
$\mathbf{c p}=4 \mathrm{cp}=1$ has produced a 2 x 2 -matrix of 64 -arrays wy $[\mathrm{i} 1, \mathrm{j} 1](\mathrm{i} 1, \mathrm{j} 1=0,1), \mathrm{cp}=2$ has produced a 64 -array wb and $\mathrm{cp}=3$ has produced a 64 -array wr. After this cp is set to 4 ,
and when $\mathrm{cp}=4$ these six arrays are submitted to de-quantization and the inverse discrete cosine transform, and the resulting numbers are colour values to be combined in the right way to colour the 16×16-square. The coordinate set of the 16×16-square is ($\mathrm{i} 0, \mathrm{j} 0$) $(\mathrm{i} 0=0, \ldots$, wid8-1, $\mathrm{j} 0=0, \ldots$, hei8-1). And within such a 16 x 16 -square, the coordinate sets for the four 8 x 8 -squares are ($\mathrm{i} 1, \mathrm{j} 1$), $\mathrm{i} 1, \mathrm{j} 1=0,1$, so that the left top corner of the 8 x 8 -square ($\mathrm{i} 1, \mathrm{j} 1$) in the picture has coordinate set $(\mathrm{i} 2, \mathrm{j} 2)$, where $\mathrm{i} 2=(\mathrm{i} 0 * \mathrm{H} 1+\mathrm{i} 1) * 8$ and $\mathrm{j} 2=(\mathrm{j} 0 * \mathrm{~V} 1+\mathrm{j} 1) *$ 8. Within an 8 x 8 -square the coordinate sets are (i, j), $\mathrm{i}, \mathrm{j}=0, \ldots, 7$. For the 8 x 8 -square with coordinate set (i1, j1) in the 16×16-square with coordinate set (i0, $j 0$), the point (i, j) corresponds 1) in the picture, to the point having coordinate set ($\mathrm{i} 2+\mathrm{i}, \mathrm{j} 2+\mathrm{j}$), and 2) in the 8 x 8 -square of the colour components corresponding to the 16 x 16 -square, to the point having coordinate set ($\mathrm{i} 3, \mathrm{j} 3$), where $\mathrm{i} 3=4 * \mathrm{i} 1+\mathrm{i}$ div H 1 and $\mathrm{j} 3=4^{*} \mathrm{j} 1+\mathrm{j}$ div V1.

We denote by $i d c t y(\mathrm{w})$ and $\operatorname{idctc}(\mathrm{w})$, respectively, the function that de-quantizes and takes the inverse discrete cosine transform of a 64 -array w of an 8 x 8 -square of the Y component and of the colour components. For the 8 x 8 -square (i1, j1) (of the 16 x 16 -square of the Y component), idcty is applied to the 64 -array wy $[\mathrm{i} 1, \mathrm{j} 1]$. We call the resulting 8 x 8 -matrix fy $(\mathrm{fy}=\operatorname{idcty}(\mathrm{wy}[\mathrm{i} 1, \mathrm{j} 1]))$ and let yy be the value of fy in the point $(\mathrm{i}, \mathrm{j}): \mathrm{yy}=\mathrm{fy}[\mathrm{i}, \mathrm{j}]$. For the $8 x 8$-square of the colour components (corresponding to the 16×16-square), idctc is applied to the 64 -arrays wb and wr. We call the resulting 8 x 8 -matrices fb and $\mathrm{fr}(\mathrm{fb}=i d c t c(\mathrm{wb})$ and fr $=i d c t c(\mathrm{wr}))$ and let cb and br be the values of fb and fr in the point ($\mathrm{i} 3, \mathrm{j} 3$) corresponding to $(\mathrm{i}, \mathrm{j})(\mathrm{and}(\mathrm{i} 1, \mathrm{j} 1)): \mathrm{cb}=\mathrm{fb}[\mathrm{i} 3, \mathrm{j} 3]$ and $\mathrm{cr}=\mathrm{fr}[\mathrm{i} 3, \mathrm{j} 3]$.
The YCbCr triple (yy , cb, cr) is converted to the RGB triple (tr , tg , tb) by the inverse of the RGB \rightarrow YCbCr transform. And the point to be coloured with this RGB triple has coordinate set (i2 $+\mathrm{i}, \mathrm{j} 2+\mathrm{j}$):
if $\mathrm{cp}=1$ then
begin
if $\mathrm{l}=1$ then
begin

$$
\mathrm{dcy} 0=\mathrm{dcy}
$$

decodedy
num

$$
\mathrm{dcy}=\mathrm{m}+\mathrm{dcy} 0
$$

$$
\operatorname{wy} 1[i 1, \mathrm{j} 1]=\mathrm{dcy}
$$

end
decodeay
formac
if $\mathrm{l}=64$ then
begin
$\mathrm{l}=1$

$$
\text { wy }[i 1, j 1]=w
$$

```
    pos[0] = i1
    pos[1] = j1
    i1 = nextpos(pos)[0]
j1 = nextpos(pos)[1]
if (i1 = 0) and (j1 = 0) then
    cp = cp + 1
end
end
if cp = 2 then
begin
    if l=1 then
    begin
            dcb0 = dcb
            decodedc
            num
            dcb = m + dcb0
    end
    decodeac
    formac
    if l = 64 then
        begin
            l=1
            wb}=\textrm{w
            cp = cp +1
            end
end
if cp = 3 then
begin
    if l=1 then
        begin
            dcr0 = dcr
        decodedc
```

$$
\begin{aligned}
& \text { num } \\
& \mathrm{dcr}=\mathrm{m}+\mathrm{dcr} 0 \\
& \text { end } \\
& \text { decodeac } \\
& \text { formac } \\
& \text { if } \mathrm{l}=64 \text { then } \\
& \text { begin } \\
& 1=1 \\
& \mathrm{wr}=\mathrm{w} \\
& \mathrm{cp}=\mathrm{cp}+1 \\
& \text { end } \\
& \text { end } \\
& \text { if } \mathrm{cp}=4 \text { then } \\
& \text { begin } \\
& \mathrm{cp}=1 \\
& \mathrm{wb}[1]=\mathrm{dcb} \\
& \operatorname{wr}[1]=\mathrm{dcr} \\
& \mathrm{fb}=\operatorname{idctc}(\mathrm{wb}) \\
& \mathrm{fr}=\operatorname{idctc}(\mathrm{wr}) \\
& \text { for } \mathrm{j} 1=0 \text { to } \mathrm{v} 1-1 \text { do } \\
& \text { for } \mathrm{i} 1=0 \text { to h1-1 do } \\
& \text { begin } \\
& \operatorname{wy}[11, \mathrm{j} 1][1]=\operatorname{wy} 1[11, \mathrm{j} 1] \\
& \mathrm{fy}=\operatorname{idcty}(\mathrm{wy}[\mathrm{i} 1, \mathrm{j} 1]) \\
& \mathrm{i} 2=(\mathrm{i} 0 * \mathrm{~h} 1+\mathrm{i} 1) * 8 \\
& \mathrm{j} 2=(\mathrm{j} 0 * \mathrm{v} 1+\mathrm{j} 1) * 8 \\
& \text { for } \mathrm{j}=0 \text { to } 7 \text { do } \\
& \text { for } \mathrm{i}=0 \text { to } 7 \text { do } \\
& \text { begin } \\
& \mathrm{i} 3=4 * \mathrm{i} 1+\mathrm{i} \text { div h1 } \\
& \mathrm{j} 3=4 \text { * } \mathrm{j} 1+\mathrm{j} \text { div v1 } \\
& y y=f y[i, j]
\end{aligned}
$$

```
                    \(\mathrm{cb}=\mathrm{fb}[\mathrm{i} 3, \mathrm{j} 3]\)
                    \(\mathrm{cr}=\mathrm{fr}[i 3, \mathrm{j} 3]\)
                    \(\operatorname{tr}=\operatorname{round}(\mathrm{yy}+1.402 * \mathrm{cr}+128)\)
                    \(\operatorname{tg}=\operatorname{round}(\mathrm{yy}-0.3441 * \mathrm{cb}-0.71414 * \mathrm{cr}+128)\)
                    \(\mathrm{tb}=\operatorname{round}(\mathrm{yy}+1.772 * \mathrm{cb}+128)\)
                    if \(\operatorname{tr}>255\) then
            \(\operatorname{tr}=255\)
            if \(\operatorname{tr}<0\) then
            tr \(=0\)
                    if \(\operatorname{tg}>255\) then
                \(\operatorname{tg}=255\)
                    if \(\operatorname{tg}<0\) then
                \(\operatorname{tg}=0\)
                    if \(\mathrm{tb}>255\) then
                    \(\mathrm{tb}=255\)
                    if \(\mathrm{tb}<0\) then
                        tb \(=0\)
                    \(\operatorname{setpixel}(\mathrm{i} 2+\mathrm{i}, \mathrm{j} 2+\mathrm{j}, \operatorname{tr}, \operatorname{tg}\), tb)
            end
            end
    \(\mathrm{i} 1=0\)
    \(\mathrm{j} 1=0\)
    \(\mathrm{i} 0=\mathrm{i} 0+1\)
    if i0 * h1 * \(8>=\) width then
    begin
        \(\mathrm{i} 0=0\)
        \(j 0=j 0+1\)
    end
end
```

The function nextpos(pos) can be calculated by this program:

$$
\begin{aligned}
& \mathrm{i}=\operatorname{pos}[0] \\
& \mathrm{j}=\operatorname{pos}[1]
\end{aligned}
$$

$\mathrm{i}=\mathrm{i}+1$
if $(\mathrm{v} 1=2)$ and $(\mathrm{j}=0)$ and $(\mathrm{i}=\mathrm{h} 1)$ then
begin

$$
\begin{aligned}
& \mathrm{j}=1 \\
& \mathrm{i}=0
\end{aligned}
$$

end
if $(\mathrm{j}=\mathrm{v} 1-1)$ and $(\mathrm{i}=\mathrm{h} 1)$ then
begin
$\mathrm{i}=0$
$j=0$
end
nextpos $[0]=\mathrm{i}$
nextpos[1] $=\mathrm{j}$
The program for formac which, after the decoding decodeay and decodeac of the AC part of the Y component and the colour components, respectively, forms the AC part of the 64 -array w (that is, the $\mathrm{w}[1]$'s for $\mathrm{l}>1$), producing two numbers nz (number of zeros) and val (number of digits to be used by num), could look like this:

```
if val \(>0\) then
    begin
    if \(n z>0\) then
        for \(\mathrm{i}=1\) to nz do
        begin
            \(\mathrm{l}=1+1\)
            \(\mathrm{w}[1]=0\)
        end
    num
    \(1=1+1\)
    \(\mathrm{w}[1]=\mathrm{m}\)
    end
if \((\mathrm{nz}=15)\) and \((\mathrm{val}=0)\) then
    for \(\mathrm{i}=1\) to 16 do
    begin
        \(l=1+1\)
```

$$
\begin{aligned}
& \qquad \mathrm{w}[\mathrm{l}]=0 \\
& \text { end } \\
& \text { if }(\mathrm{nz}=0) \text { and }(\mathrm{val}=0) \text { then } \\
& \text { while } \mathrm{l}<64 \text { do } \\
& \text { begin } \\
& \mathrm{l}=\mathrm{l}+1 \\
& \text { w }[\mathrm{l}]=0 \\
& \text { end }
\end{aligned}
$$

14 When the width or the height is not divisible by 8

In our program that produces the JPEG file, we have only used the largest part of the picture (beginning at the left top corner) which can be regularily divided up in 8 x 8 -(or $16 x 16)$-squares. If the dividing up does not fit the picture, the width or/and the height of the picture must be increased by the necessary number of pixels, and the new vertical and horizontal lines are usually coloured as the last vertical and horizontal line of the picture, respectively. The program that draws the picture from the file needs no changes: it draws in reality the extended picture, but we do only see the true part of it, because the drawing window is given the true width and height. The top picture (shown on an enlarged scale) has width and height of 33 pixels, and the width and the height must be increased by 7 pixels in order to be divisible by 8 . If we extend the width and the height of the drawing window by 7 pixels, we will see the bottom picture:

Figure 34 The visible picture

Figure 35 The real picture

15 Appendix 1: Summary of the header segments

DQT (quantization)

Marker $=(255,219)$
Length $=(0,67)$
0 ($\frac{1}{2}$ byte)
destination identifier ($\frac{1}{2}$ byte)(for instance 0 for the Y component and 1 for the colour components)
the table (16 bytes)
SOF (frame)
Marker $=(255,192)$
Length $=(0,8+3 *$ number of components $)$
8
width $=\mathrm{b} 1^{*} 256+\mathrm{b} 2$, pair (b1, b2)
height $=\mathrm{b} 1^{*} 256+\mathrm{b} 2$, pair (b1, b2)
number of components (1-3)
for each component:
component identifier (for instance $0,1,2$ for the YCbCr components)
Hi ($\frac{1}{2}$ byte)(1 for the colour components, 1 or 2 for the Y component)
Vi $\left(\frac{1}{2}\right.$ byte)(1 for the colour components, 1 or 2 for the Y component)
quantization table destination selector (for instance 0 for the Y component and 1 for the colour components)

DHT (Huffman)

Marker $=(255,196)$
Length $=(0,19+$ number of Huffman values (nhv))
0 for DC, 1 for AC ($\frac{1}{2}$ byte)
destination identifier ($\frac{1}{2}$ byte)(for instance 0 for the Y component and 1 for the colour components)
the list BITS (16 byte)
the list HUFFVAL (nhv bytes)
SOS (scan)
Marker $=(255,218)$
Length $=(0,6+2 *$ number of components $)$
number of components (1-3)
for each component:
component identifier (for instance $0,1,2$ for the YCbCr components)
destination selector of DC Huffman table ($\frac{1}{2}$ byte)(for instance 0 for the Y component and 1 for the colour components)
destination selector of AC Huffman table ($\frac{1}{2}$ byte)(for instance 0 for the Y component and 1 for the colour components)

0
63
0

16 Appendix 2: Programs for calculating code lengths from the actual picture

We assume that we have a number (nhv) of (Huffman) values (non-negative integers) which are assigned frequencies (having sum 1), and we order the values according the decreasing frequency. In order to avoid that a code consists only of 1's, we add provisionally a value whose frequency is half (for instance) of the frequency of the last and least value. We call the new number (nhv +1) of Huffman values nhv, and replace nhv by nhv -1 when we finally remove a code from the codes of the largest length. We thus have put the values into a one-to-one correnpondance with the natural numbers $1,2, \ldots$, nhv, and we have an array a[i] from $\mathrm{i}=1$ to nhv of decreasing frequencies. We let this array of frequencies be the first in an array of arrays of frequencies: $\mathrm{a}[1, \mathrm{i}]=\mathrm{a}[\mathrm{i}]$ for $\mathrm{i}=1$ to nhv. The next array of frequencies a[2, i$]$, constructed from a[1, i] as explained in the section The Huffman coding, is still decreasing and is one shorter than $\mathrm{a}[1, \mathrm{i}]$. The last array $\mathrm{a}[\mathrm{nhv}, \mathrm{i}]$ has only one element, namely the frequency 1 : $\mathrm{a}[\mathrm{nhv}, 1]=1$.

The values (identified with the natural numbers) $1,2, \ldots$, nhv, are the first nodes of the Huffman tree, we identify each new constructed node with the succeeding natural numbers nhv $+1, \operatorname{hnv}+2, \ldots$ The node for the frequency a[j, i$]$ is denoted node[j, i$]$, so that node[1, i$]$ $=\mathrm{i}$ for $\mathrm{i}=1, \ldots$, nhv. Let next $[\mathrm{k}](\mathrm{k}=1, \ldots, 256)$ be an array (of non-negative integers) initially set to 0 , and to be constructed so that next $[\mathrm{k}]$ is the end-node for the line from the node k . The program that calculates the two double arrays $\mathrm{a}[\mathrm{j}, \mathrm{i}]$ and node $[\mathrm{j}, \mathrm{i}]$ (of frequencies and nodes, respectively) and (from node[j, i]) the array next [k] (of next nodes), can look like this:

```
    \(\mathrm{n}=\mathrm{nh} \mathrm{v}\)
    \(\mathrm{m}=\mathrm{n}\)
    for \(\mathrm{i}=1\) to n do
    node \([1, \mathrm{i}]=\mathrm{i}\)
    \(\mathrm{i}=1\)
0
    \(\mathrm{m}=\mathrm{m}+1\)
    \(\operatorname{next}[\operatorname{node}[\mathrm{i}, \mathrm{n}-1]]=\mathrm{m}\)
    \(\operatorname{next}[\operatorname{node}[\mathrm{i}, \mathrm{n}]]=\mathrm{m}\)
    \(\mathrm{j}=1\)
    \(\mathrm{e}=\mathrm{a}[\mathrm{i}, \mathrm{n}-1]+\mathrm{a}[\mathrm{i}, \mathrm{n}]\)
```

if $\mathrm{e}>\mathrm{a}[\mathrm{i}, 1]$ then

$$
\mathrm{j}=1
$$

else
while ($\mathrm{e}<=\mathrm{a}[\mathrm{i}, \mathrm{j}]$) and ($\mathrm{j}<=\mathrm{n}$) do

$$
j=j+1
$$

$$
\mathrm{i}=\mathrm{i}+1
$$

$$
\mathrm{n}=\mathrm{n}-1
$$

$$
\text { if } \mathrm{j}>1 \text { then }
$$

$$
\text { for } \mathrm{k}=1 \text { to } \mathrm{j}-1 \text { do }
$$

begin
$\mathrm{a}[\mathrm{i}, \mathrm{k}]=\mathrm{a}[\mathrm{i}-1, \mathrm{k}]$ node $[\mathrm{i}, \mathrm{k}]=$ node $[\mathrm{i}-1, \mathrm{k}]$
end
$a[i, j]=e$
node $[\mathrm{i}, \mathrm{j}]=\mathrm{m}$
if $\mathrm{j}<\mathrm{n}$ then
for $\mathrm{k}=1$ to $\mathrm{n}-\mathrm{j}$ do
begin
$\mathrm{a}[\mathrm{i}, \mathrm{j}+\mathrm{k}]=\mathrm{a}[\mathrm{i}-1, \mathrm{j}-1+\mathrm{k}]$
node $[i, j+k]=\operatorname{node}[i-1, j-1+k]$
end
if $\mathrm{n}>1$ then
goto 0
The array codesize $[\mathrm{k}]$ which for each value $\mathrm{k}(\mathrm{k}=1, \ldots$, nhv) states the code length (= number of lines from k to the end-note having frequency 1), can be calculated (from next $[k]$) by this program:
for $\mathrm{k}=1$ to nhv do
begin
$j=0$
$\mathrm{i}=\mathrm{k}$
while $\mathrm{i}>0$ do
begin

$$
\mathrm{i}=\operatorname{next}[\mathrm{i}]
$$

$$
\begin{aligned}
& \quad \mathrm{j}=\mathrm{j}+1 \\
& \text { end } \\
& \text { codesize }[\mathrm{k}]=\mathrm{j}-1 \\
& \text { end }
\end{aligned}
$$

We can assume that no (Huffman) value has so small frequency that its code length is greater than 32. The array bits $[\mathrm{i}]$ stating for each number i from 1 to 32 the number of values k having codesize $[\mathrm{k}]=\mathrm{i}$, can be calculated by this program:
$i=0$
while i < 32 do

begin

$$
\mathrm{i}=\mathrm{i}+1
$$

$$
\operatorname{bits}[\mathrm{i}]=0
$$

$$
\mathrm{j}=0
$$

$$
\text { while } \mathrm{j}<255 \text { do }
$$

begin

$$
\mathrm{j}=\mathrm{j}+1
$$

$$
\text { if codesize }[\mathrm{j}]=\mathrm{i} \text { then }
$$

$$
\operatorname{bits}[\mathrm{i}]=\operatorname{bits}[\mathrm{i}]+1
$$

end
end
As no code length must exceed 16, the array bits[i] must possibly be revised. This can be done by this procedure (explained in the section The Huffman coding):

$$
\begin{aligned}
& i=32 \\
& 0 \\
& \text { if bits }[i]>0 \text { then } \\
& \quad \operatorname{begin} \\
& j=i-1 \\
& j=j-1 \\
& \quad \text { while bits }[j]=0 \text { do } \\
& j=j-1 \\
& \operatorname{bits}[i]=\operatorname{bits}[i]-2 \\
& \operatorname{bits}[i-1]=\operatorname{bits}[i-1]+1 \\
& \operatorname{bits}[j+1]=\operatorname{bits}[j+1]+2
\end{aligned}
$$

```
    bits[j] = bits[j] - 1
    goto 0
```

end
else
begin
$\mathrm{i}=\mathrm{i}-1$
if $\mathrm{i}>16$ then
goto 0
while bits $[\mathrm{i}]=0$ do
$\mathrm{i}=\mathrm{i}-1$
$\operatorname{bits}[\mathrm{i}]=\operatorname{bits}[\mathrm{i}]-1$
end
$n h v=n h v-1$

The operations bits $[\mathrm{i}]=\operatorname{bits}[\mathrm{i}]-1$ and $\mathrm{nhv}=\mathrm{nhv}-1$ are the removal of the provisionally code consisting of only 1 's. This array bits $[\mathrm{i}](\mathrm{i}=1, \ldots, 16)$ is the list BITS, and we get the list HUFFVAL by diving the set $\{1,2, \ldots, \operatorname{nhv}\}$ up according to bits[i]: if i1 is the first i such that bits[i] >0, the first part is the first bits[i1] numbers of $\{1,2, \ldots, n h v\}$, if i2 is the next i such that bits $[\mathrm{i}]>0$, the next part is the next bits $[\mathrm{i} 2]$ numbers of $\{1,2, \ldots$, nhv $\}$, etc. The array HUFFVAL[k] $(\mathrm{k}=1, \ldots, \mathrm{nhv})$ is the sequence of values which we have put into a one-to-one correspondance with $1,2, \ldots$, nhv.

For a colour picture we must have four sets of Huffman values with associated frequencies: for the DC and for the AC numbers of the Y component, and for the DC and for the AC numbers of the colour components. We get these four sets by performing a pre-scanning of the picture: we let an 8x8-square run through the picture, and for the DC numbers of the Y component, for instance, we register the numbers size(diff) that appear and calculate for each of these its frequency. In this case the possible Huffman values are the numbers 0,1 , $\ldots, 11$, and if these appear respectively $n 0, \mathrm{n} 1, \ldots, \mathrm{n} 11$ times, and the number of 8 x 8 -squares is N , then the frequencies are the numbers $\mathrm{n} 0 / \mathrm{N}, \mathrm{n} 1 / \mathrm{N}, \ldots, \mathrm{n} 11 / \mathrm{N}$.

Finally we show the program which can order a sequence of (Huffman) values with attached frequencies according to decreasing frequency and count those of non-zero frequency (that is, find the number nhv of Huffman values). The maximum possible value is called max (it is 11 for the DC values and 250 for the AC values). The original and the new function is called freq $0[\mathrm{val}]$ and freq[val], respectively (they are arrays of reals from 0 to max). per[i] is an array from 0 to max of integers which performs the permutation of the values:

$$
\begin{aligned}
& \text { for } \mathrm{i}=0 \text { to } \max \text { do } \\
& \operatorname{per}[\mathrm{i}]=-1 \\
& \mathrm{~m}=0 \\
& \text { while } \mathrm{m}<=\max \text { do }
\end{aligned}
$$

```
begin
    e = 0;
    for i=0 to max do
    begin
        z=0
        j = 0
        while (j <= max) and (z=0) do
        begin
            if i = per[j] then
            z = 1
            j = j + 1
            end
        if (z=0) and (freq0[i] >=e) then
            begin
            k= i
            e=freq[i]
        end
        end
    per[m] = k
    m}=m+
end
j = 0
for i = 0 to max do
if freq0[per[i]] > 0 then
    begin
    j= j + 1
    huffval[j] = per[i]
    freq[j] = freq0[per[i]]
    end
```

nhv $=\mathrm{j}$

We have made a version (CJPEGg_huf) of our program (CJPEGg) which can produce a grey scale file and in which we perform a pre-scanning that calculates frequencies from which we construct Huffman tables. For the DC values we have an array freqc[val] of integers (val =
size(diff)) and an integer lc, both starting with 0 , and which for each new value val we meet are increased by 1 . When the pre-scanning is finished, the frequency of val is freqc[val]/lc. The same applies for the AC values ($\mathrm{val}=\mathrm{m}^{*} 16+\mathrm{k}$ or 240 or 0).

We will find the Huffman values for three simple grey scale pictures of 200×200 pixels:
The first is of only one colour, namely the middle grey value 128 , corresponding to the signed byte 0 . There is only one DC Huffman value and one AC Huffman value, namely 0 having frequency 1 . The picture is divided up in 6258 x 8 -squares, and for each of these the encoded data takes up 2 bits. In total 1250 bits $=157$ bytes after padding with 6 bits. The header takes up 156 bytes and the file ends with the two bytes EOF, therefore the file takes up $156+2+157=315$ bytes.

The second picture (the left below) is of two colours. There are three DC Huffmann values: 0 with frequency $0.8816,6$ with frequency 0.08 and 7 with frequency 0.0384 . There are five AC Huffman values: the first 0 with frequency $0.86 \ldots$, the second 194 with frequency $0.03 \ldots$. The reason for the non-zero AC values is that the vertical division line lies inside some of the $8 x 8$-squares. The file takes up 485 bytes.

The third picture (the right below) is also of two colours. The division is coincident with the division in 8 x 8 -squares, so that there are 625 of these small pictures. We have in this case set all the quantization numbers to 1 (quality $=100$ per cent). As all the $8 x 8$-squares are identical, there are only two DC Huffman values: 0 and a value used only for the first square, and thus having frequency $1 / 625=0.0016$. The two colours are black and white, having colour values (as signed bytes) -128 and 127, respectively, and the average value is -16.5 (because there is a little more black than white). Therefore the first DC number is $8^{*}(-16.5)$ $=-132$, having size 8 , which is the non-zero DC Huffman value. The Huffman value 0 is assigned code word " 0 " and the Huffman value 8 is assigned code word " 10 ", therefore the DC part of the encoded data for the first $8 x 8$-square takes up $2+8=10$ bits, and the others 1 bit. All the AC parts of the encoded data for the $8 x 8$-squares are identical and take up 386 bits. In total the encoded data should take up $1^{*}(10+386)+624^{*}(1+386)=241884$ bits $=30236$ bytes after padding with 4 bits. The header takes up 172 bytes and the file ends with the two bytes EOF, therefore the file should take up $30236+172+2=30410$ bytes. But in reality it takes up 31192 bytes -782 bytes more. The reason for the difference is that the byte 255 (8 figures 1) has appeared 782 times in the running conversion of 8 -blocks of bits into bytes, and thus has been followed by the zero byte.

Figure 36

Figure 37

The condition that no code must consist only of 1 's, seems not to be strictly necessary: if we omit it, some image programs accept the file (Paint and Internet Explorer, for instance), but some do not (the image shower of Windows and Adobe Photoshop, for instance).

The procedure which limits the length of the code words to 16 , can of course only come into play for the AC values and it presupposes that the picture has a certain size and variation of colours, but the operation of it is not a seldom phenomenon: the examples of Difficult pictures in part one (of only 400 pixels) activate the procedure.

17 References

- Information Technology - Digital Compression and Coding of Continuous-Tone Still Images - Requirements and Guidelines/Recommendation T. 81 (1992), ITU (International Telecommunication Union). ${ }^{1}$ at W3.org
- JPEG File Interchange Format/Version 1.02 (1992) by Eric Hamilton, C-Cube Microsystems. ${ }^{2}$ at W3.org
- Official Joint Photographic Experts Group site ${ }^{3}$

[^0]
18 Download programs

Download the programs from this site: JPEG programs ${ }^{1}$

19 Contributors

Edits User
17 Adrignola ${ }^{1}$
1 Dirk Hünniger ${ }^{2}$
68 Gertbuschmann ${ }^{3}$
3 JamesCrook ${ }^{4}$
1 MisterSpike ${ }^{5}$

[^1]
List of Figures

- GFDL: Gnu Free Documentation License. http://www.gnu.org/licenses/fdl.html
- cc-by-sa-3.0: Creative Commons Attribution ShareAlike 3.0 License. http:// creativecommons.org/licenses/by-sa/3.0/
- cc-by-sa-2.5: Creative Commons Attribution ShareAlike 2.5 License. http:// creativecommons.org/licenses/by-sa/2.5/
- cc-by-sa-2.0: Creative Commons Attribution ShareAlike 2.0 License. http:// creativecommons.org/licenses/by-sa/2.0/
- cc-by-sa-1.0: Creative Commons Attribution ShareAlike 1.0 License. http:// creativecommons.org/licenses/by-sa/1.0/
- cc-by-2.0: Creative Commons Attribution 2.0 License. http://creativecommons. org/licenses/by/2.0/
- cc-by-2.0: Creative Commons Attribution 2.0 License. http://creativecommons. org/licenses/by/2.0/deed.en
- cc-by-2.5: Creative Commons Attribution 2.5 License. http://creativecommons. org/licenses/by/2.5/deed.en
- cc-by-3.0: Creative Commons Attribution 3.0 License. http://creativecommons. org/licenses/by/3.0/deed.en
- GPL: GNU General Public License. http://www.gnu.org/licenses/gpl-2.0.txt
- LGPL: GNU Lesser General Public License. http://www.gnu.org/licenses/lgpl. html
- PD: This image is in the public domain.
- ATTR: The copyright holder of this file allows anyone to use it for any purpose, provided that the copyright holder is properly attributed. Redistribution, derivative work, commercial use, and all other use is permitted.
- EURO: This is the common (reverse) face of a euro coin. The copyright on the design of the common face of the euro coins belongs to the European Commission. Authorised is reproduction in a format without relief (drawings, paintings, films) provided they are not detrimental to the image of the euro.
- LFK: Lizenz Freie Kunst. http://artlibre.org/licence/lal/de
- CFR: Copyright free use.
- EPL: Eclipse Public License. http://www.eclipse.org/org/documents/epl-v10. php

Copies of the GPL, the LGPL as well as a GFDL are included in chapter Licenses ${ }^{6}$. Please note that images in the public domain do not require attribution. You may click on the image numbers in the following table to open the webpage of the images in your webbrower.

[^2]| 1 | Gertbuschmann ${ }^{7}$ | PD |
| :---: | :---: | :---: |
| 2 | Gertbuschmann ${ }^{8}$ | PD |
| 3 | Gertbuschmann ${ }^{9}$ | PD |
| 4 | Gertbuschmann ${ }^{10}$ | PD |
| 5 | Gertbuschmann ${ }^{11}$ | PD |
| 6 | Gertbuschmann ${ }^{12}$ | PD |
| 7 | Gertbuschmann ${ }^{13}$ | PD |
| 8 | Gertbuschmann ${ }^{14}$ | PD |
| 9 | Gertbuschmann ${ }^{15}$ | PD |
| 10 | Gertbuschmann ${ }^{16}$ | PD |
| 11 | Gertbuschmann ${ }^{17}$ | PD |
| 12 | Gertbuschmann ${ }^{18}$ | PD |
| 13 | Gertbuschmann ${ }^{19}$ | PD |
| 14 | Gertbuschmann ${ }^{20}$ | PD |
| 15 | Gertbuschmann ${ }^{21}$ | PD |
| 16 | Gertbuschmann ${ }^{22}$ | PD |
| 17 | Gertbuschmann ${ }^{23}$ | PD |
| 18 | Gertbuschmann ${ }^{24}$ | PD |
| 19 | Gertbuschmann ${ }^{25}$ | PD |
| 20 | Gertbuschmann ${ }^{26}$ | PD |
| 21 | Gertbuschmann ${ }^{27}$ | PD |
| 22 | Gertbuschmann ${ }^{28}$ | PD |
| 23 | Gertbuschmann ${ }^{29}$ | PD |
| 24 | Gertbuschmann ${ }^{30}$ | PD |
| 25 | Gertbuschmann ${ }^{31}$ | PD |
| 26 | Gertbuschmann ${ }^{32}$ | PD |
| 27 | | PD |

http://en.wikibooks.org/wiki/User\%3AGertbuschmann http://en.wikibooks.org/wiki/User\%3AGertbuschmann

28		PD
29		PD
30	Gertbuschmann ${ }^{33}$	PD
31		PD
32	Gertbuschmann 34	PD
33	Gertbuschmann 35	PD
34	Gertbuschmann 36	PD
35	Gertbuschmann	
36	Gertbuschmann	
37		PD

33 http://en.wikibooks.org/wiki/User\%3AGertbuschmann http://en.wikibooks.org/wiki/User\%3AGertbuschmann http://en.wikibooks.org/wiki/User\%3AGertbuschmann http://en.wikibooks.org/wiki/User\%3AGertbuschmann http://en.wikibooks.org/wiki/User\%3AGertbuschmann http://en.wikibooks.org/wiki/User\%3AGertbuschmann

20 Licenses

20.1 GNU GENERAL PUBLIC LICENSE

Abstract

Copyright © 2007 Free Software Foundation, Inc http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license it is not allowed. Preamble

The GNU General Public License is a free, copyleft The licenses for most software and other practi- cal works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program-to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released software; it applies also to any other work released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software source code or can get it if you want it, that you can change the software or use pieces of it in new things. To protect your rights, we need to prevent others from denying you these rights or asking you to sur render the rights. Therefore, you have certain re- sponsibilities if you distribute copies of the soft ware, or if you modify the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you reon to the recipients the same freedoms that you re- ceived. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify

For the developers' and authors' protection, the
GPL clearly explains that there is no warranty for this free software. For both users' and authors
sake, the GPL requires that modified versions be marked as changed, so that their problems will not
be attributed erroneously to authors of previous

Some devices are designed to deny users access to Some devices are designed to deny users access to
install or run modified versions of the software in-
side them, although the manufacturer can do so side them, although the manufacturer can do so
This is fundamentally incompatible with the aim of protecting users' freedom to change the software
The systematic pattern of such abuse occurs in the precisel where it is most unacceptable. Therefore we have designed this version of the GPL to prohibit the practice for those products. If such prob-
lems arise substantially in other domains, we stand ready to extend this provision to those domains in
future versions of the GPL, as needed to protect future versions of th
the freedom of users.
Finally, every program is threatened constantly by software patents. States should not allow patents general-purpose computers, but in those that do,
we wish to avoid the special danger that patents we wish to avoid the special danger that patents
applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that

The precise terms and conditions for copying, dis-
tribution and modification follow. TERMS AND The precise terms and condition
tribution and modification foll
CONDITIONS 0 . Definitions.
"This License" refers to version 3 of the GNU Gen-
"Copyright" also means copyright-like laws that ap ply to other kinds of works, such as semiconductor
"The Program" refers to any copyrightable work licensed under this License. Each licensee is ad-
dressed as "you". "Licensees" and "recipients" may dressed as "you". "Licensees" an
be individuals or organizations.

To "modify" a work means to copy from or adapt
all or part of the work in a fashion requiring copyright permission, other than the making of an exact
copy. The resulting work is called a "modified vercopy. The resulting work is called a "modified ver-
sion" of the earlier work or a work "based on" the
earlier work
dified Pro
a work based on the Program
To "propagate" a work means to do anything with it that, without permission, would make you directly
or secondarily liable for infringement under appliputer or modifying a private copy. Propagation in
cludes copying, distribution (with or without mod ification), making available to the pu
some countries other activities as well.

To "convey" a work means any kind of propagation that enables other parties to make or receive copies,
Mere interaction with a user through a computer

An interactive user interface displays "Appropriate
Legal Notices" to the extent that it includes a con venient and prominently visible feature that (1) dis plays an appropriate copyright notice, and (2) tells
the user that there is no warranty for the work (except to the extent that warranties are provided),
that licensees may convey the work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or the interface presents a list of user commands or
options, such as a menu, a prominent item in the
list meets this criterion. 1. Source Code.

The "source code" for a work means the preferred form of the work for making modifications to it
"Object code" means any non-source form of a
work.

A "Standard Interface" means an interface that ei ther is an official standard defined by a recognized
standards body, or, in the case of interfaces spec ified for a particular programming language, one
that is widely used among developers working in
that language.

The "System Libraries" of an executable work in that (a) is included in the normal form of packag ing a Major Component, but which is not part of able use of the work with that Major Component or to implement a Standard Interface for which an
implementation is available to the public in source code form. A "Major Component", in this context means a major essential component (kernel, window
system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object
code interpreter used to run it.

The "Corresponding Source" for a work in object code form means all the source code needed to gen-
erate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does
not include the work's System Libraries, or general purpose tools or generally available free programs which are used unmodified in performing those acexample, Corresponding Source includes interface definition files associated with source files for the dynamically linked subprograms that the work is specifically designed to require, such as by intimate
data communication or control flow between those data communication or control flow betwe
subprograms and other parts of the work.

The Corresponding Source need not include any thing that users can regenerate automati,
other parts of the Corresponding Source.

The Corresponding Source for a work in source
form is that same work. 2. Basic Permissions.
All rights granted under this License are granted for the term of copyright on the Program, and are This License explicitly affirms cond unlimited met mission to run the unmodified Program. The out put from running a covered work is covered by this
License only if the output, given its content, con License only if the output, given its content, con-
stitutes a covered work. This License acknowledges stitutes a covered work. This License acknowledges
your rights of fair use or other equivalent, as pro-
vided by copyright law.

You may make, run and propagate covered work that you do not convey, without conditions so long convey covered works to others for the sole purpose of having them make modifications exclusively for
you, or provide you with facilities for running those works, provided that you comply with the term of this License in conveying all material for which
you do not control copyright. Those thus making or you do not control copyright. Those thus making or running the covered works for you must do so exclu-
sively on your behalf, under your direction and consively on your behalf, under your direction and con-
trol, on terms that prohibit them from making any copies of your copyrighted material outside thei copies of your copyrig
relationship with you.

Conveying under any other circumstances is permit ted solely under the conditions stated below. Subli
censing is not allowed; section 10 makes it unneces censing is not allowed; section 10 makes it unneces
sary. 3. Protecting Users' Legal Rights From Anti-
Circumvention Law.

No covered work shall be deemed part of an effec tive technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO fulfilling obligations under article 11 of the WIPO
copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumven tion of such measures.

When you convey a covered work, you waive any
legal power to forbid circumvention of technologi cal measures to the extent such circumvention is e fected by exercising rights under this License with
respect to the covered work, and you disclaim any respect to the covered work, and you disclaim any
intention to limit operation or modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid users, your or third parties' legal rights to forbid
circumvention of technological measures. 4. Con veying Verbatim Copies

You may convey verbatim copies of the Program's source code as you receive it, in any medium, pro
vided that you conspicuously and appropriately publish on each copy an appropriate copyright no tice; keep intact all notices stating that this License and any non-permissive terms added in accord with
section 7 apply to the code; keep intact all notice of the absence of any warranty; and give all recipi ents a copy of this License along with the Program

You may charge any price or no price for each copy that you convey, and you may offer support or war-
ranty protection for a fee. 5. Conveying Modified
Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program, tion 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified it, and giving a relevant date. ${ }^{*}$ that it is released under this License and any conditions added under section 7 . This requirement modifies the requirement in section 4 to "keep in-
tact all notices". * c) You must license the entire tact all notices". * c) You must license the entire
work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This
License gives no permission to license the work in License gives no permission to license the work in
any other way, but it does not invalidate such perany other way, but it does not invalidate such per-
mission if you have separately received it. ${ }^{*}$ d) If display Appropriate Legal Notices; however, if the
Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not

A compilation of a covered work with other sepa
rate and independent works, which are not by thei nature extensions of the covered work, and which are not combined with it such as to form a larger
program, in or on a volume of a storage or distripilation and its resulting copyright are not used to limit the access or legal rights of the compilation's clusion of a covered work in idual works permit. In cause this License to apply to the other parts of the

You may convey a covered work in object code form
under the terms of sections 4 and 5 , provided that you also convey the machine-readable Correspond
ing Source under the terms of this License, in one of these ways.
a) Convey the object code in, or embodied in tion medium), accompanied by the Correspondin Source fixed on a durable physical medium custom object code in, or embodied in, a physical produc
(including a physical distribution medium), accom panied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support give anyone who possesses the object code either
(1) a copy of the Corresponding Source for all the
software in the product that is covered by this Lisoftware in the product that is covered by this Li cense, on a durable physical medium customarily than your reaso this conveying of source, or (2) access to copy th Corresponding Source from a network server at no charge. ${ }^{*}$ c) Convey individual copies of the object
code with a copy of the written offer to provide the Corresponding Source. Thilatial only if you received the object code with such an of fer, in accord with subsection 6b. * d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You ing Source along with the object code. If the place to copy the object code is a network server, the Cor respon by you or a third party) that supports equiv alent copying facilities, provided you maintain clear directions next to the object code saying where to
find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain as needed to ensure that it is available for as lon vey the object code using peer-to-peer transmission, provided you inform other peers where the object
code and Corresponding Source of the work are being offered to the general public at no charge under

A separable portion of the object code, whose
source code is excluded from the Corresponding Source as a System Library, need not be included

A "User Product" is either (1) a "consumer prod uct", which means any tangible personal property household purposes, or (or anything designed or
sold for incorporation into a dwelling. In detersold for incorporation into a dwelling. In deter
mining whether a product is a consumer product age. For a particular product received by a par-
ticular user, "normally used" refers to a typical or common use of that class of product, regardless of
the status of the particular user or of the way in which the particular user actually uses, or expects cons expected to use, the product. A product is consumer product regardless of whether the prodconsumer uses, unless such uses represent the only
significant mode of use of the product
"Installation Information" for a User Product means any methods, procedures, authorization
keys, or other information required to install and execute modified versions of a covered work in tha User Product from a modified version of its Corre-
sponding Source. The information must suffice to sponding Source. The information must suffice to
ensure that the continued functioning of the modiensure that the continued functioning of the modi
fied object code is in no case prevented or interfere with solely because modification has been made.

If you convey an object code work under this sec-
ion in, or with, or specifically for use in, a User tion in, or with, or specifically for use in, a User
Product, and the conveying occurs as part of a use of the User Product is transferred to the reless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Informa-
tion. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for
ample, the work has been installed in ROM).

The requirement to provide Installation Informa-
tion does not include a requirement to continue to provide support service, warranty, or updates for a
work that has been modified or installed by the recipient, or for the User Product in which it has been denied when the modification itself materially and adversely affects the operation of the network or violates the rules an
across the network.

Corresponding Source conveyed, and Installation must be in a format that is publicly documented and with an implementation available to the public password or key for unpacking, reading or copying.
the terms of this License by making exceptions from one or more of its conditions. Additional permisshall be treated as though they were included in der applicable law. If additional permissions apply
only to part of the Program, that part may be used separately under those permissions, but the entire issions.

When you convey a copy of a covered work, you may at your option remove any additional permissions
from that copy, or from any part of it. (Additional permissions may be written to require their own reyou may place to a covered work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you
may (if authorized by the copyright holders of that material) supplement the terms of this License with a) Disclaiming warranty or limiting liability dif-
ferently from the terms of sections 15 and 16 of this icense; or * b) Requiring preservation of specified reasonable legal notices or author attributions in
that material or in the Appropriate Legal Notices displayed by works containing it; or * c) Prohibit-
ing misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the
original version; or ${ }^{*}$ d) Limiting the use for pub-解 material; or * e) Declining to grant rights under rademark law for use of some trade names, trademarks, or service marks; or f) Requiring indemversions of it) with contractual assumptions of liability to the recipient, for any liability that these censors and authors.

All other non-permissive additional terms are consection 10. If the Program as you received it, or any erned by this License along with a term that is a further restriction, you may remove that term. If a permits relicensing or conveying under this License you may add to a covered work material governed
by the terms of that license document, provided elicensing or conveying elicensing or conveying

If you add terms to a covered work in accord with
 ply to those files, or a notice indicating where to
find the applicable terms. Additional terms, permissive or non-permissive, may be stated in the form of a separately written ments apply either way. 8. Termination. You may not propagate or modify a covered work
except as expressly provided under this License.
Any attempt otherwise to propagate or modify it is Any attempt otherwise to propagate or modify it is
void, and will automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, is reinstated (a) provisionally, unless and until the
copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessa-

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reason-
able means, this is the first time you have received
notice of violation of this License (for any work)
from that copyright holder, and you cure the vi-
olation prior to 30 days after your receipt of the
notice.
Termination of your rights under this section does not terminate the licenses of parties who have rehently reinstated, you do not qualify to receive new licenses for the same material under section
Acceptance Not Required for Having Copies. You are not required to accept this License in or
der to receive or run a copy of the Program. Ancil as a consequence of using peer-to-peer transmission to receive a copy likewise does not require accep-
tance. However, nothing other than this License grants you permission to propagate or modify any
covered work. These actions infringe copyright if
you do not accept this License. Therefore, by modfying or propagating a covered work, you indicate your acceptance of this License to do so. 10 .
matic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient
automatically receives a license from the original automatically receives a license from the original
licensors, to run, modify and propagate that work
subject to this License. You are not responsible for enforcing compliance by third parties with this

An "entity transaction" is a transaction transferring control of an organization, or substantially all ered work results from an entity transaction, each party's predecessor in interest had or could give un der the previous paragraph, plus a right to posses-
ion of the Corresponding Source of the work from the predecessor in interest, if the pre
or can get it with reasonable efforts.

You may not impose any further restrictions on the
exercise of the rights granted or affirmed under this exercise of the rights granted or affirmed under this granted under this License, and you may not iniclaim in a lawsuit) alleging that any patent claim
is infringed by making, using, selling, offering for sale, or imp
11. Patents.
rizes use under this License of the Program or a
work on which the Program is based, The work
thus licensed is called the contributor, "contribu thus licensed is called the contributor's "contribu
tor version".

A contributor's "essential patent claims" are all tor, whether already acquired or hereafter acquired that would be infringed by some manner, permitcontributor version, but do not include claims that
would be infringed only as a consequence of further poses of this definition, "control" includes the right with the requirements of this License consistent

Each contributor grants you a non-exclusive, world wide, royalty-free patent license under the contrib-
utor's essential patent claims, to make, use, sell, of utor's essential patent claims, to make, use, sell, of
fer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
cense" is any express agreement or commitment as an express permission to practice a patent or
covenant not to sue for patent infringement). To
"grant" such a make such an agreement or commitment not to en force a patent against the party. If you convey a covered work, knowingly relying
on a patent license, and the Corresponding Source
of the work is not available for anyone to copy,
free of charge and under the terms of this License, free of charge and under the terms of this License, readily accessible means, then you must either (1)
cause the Corresponding Source to be so available, cause the Corresponding Source to be so available,
or (2) arrange to deprive yourself of the benefit
of the patent license for this particular work, or (3) arrange, in a manner consistent with the re-
quirements of this License, to extend the patent quirements of this License, to extend the patent lying" means you have actual knowledge that, but
for the patent license, your conveying the covered work in a country, or your recipient's use of the cov
ered work in a country, would infringe one or more identifiable patents in that country that you have

If, pursuant to or in connection with a single trans action or arrangement, you convey, or propagate grant a patent license to some of the parties re
ceiving the covered work authorizing them to use propagate, modify or convey a specific copy of the automatically extended to all re
ered work and works based on it

A patent license is "discriminatory" if it does not in exercise of, or is conditioned on the non-exercise
of one or more of the rights that are specifically of one or more of the rights that are specifically
granted under this License. You may not convey a
covered work if you are a party to an arrangement covered work if you are a party to an arrangement
with a third party that is in the business of dis
tributing software to the third party based on the extent of your ac
tivity of conveying the work, and under which the tivity of conveying the work, and under which the
third party grants, to any of the parties who would third party grants, to any of the parties who would
receive the covered work from you, a discrimina of the covered work conveyed by you (or copie made from those copies), or (b) primarily for and in
connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license wa
granted, prior to 28 March 2007 .

Nothing in this License shall be construed as ex cluding or limiting any implied license or other de-
fenses to infringement that may otherwise be availfenses to infringement that may otherwise be avail
able to you under applicable patent law. 12. No
Surrender of Others'' Freedom. .

If conditions are imposed on you (whether by cour order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultane
ously your obligations under this License and any you may not convey it at all. For example, if you
agree to terms that obligate you to collect a roy alty for further conveying from those to whom you
convey the Program, the only way you could satisfy both those terms and this License would be to re
frain entirely from conveying the Program. 13. Us with the GNU Affero General Public License.
cense, you have permission to link or combine any 3 of the GNU Affero General Public License int a single combined work, and to convey the result-
ing work. The terms of this License will continue to apply to the part which is the covered work, but
the special requirements of the GNU Affero General Public License, section 13, concerning interaction
through a network will apply to the combination through a network will apply to the combin
as such. 14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public Li
cense from time to time. Such new versions will be similar in spirit to the present version, but may dif-
fer in detail to address new problems or concerns.

Each version huin ber. If the Program specifies that a certain num "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered version or of any later versio Program does not specify a version number of the version ever published by the Free Software Foun-
dation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public
License can be used, that proxy's public statement of acceptance of a version permanently authorizes

Later license versions may give you additional or

 different permissions. However, no additional obli-gations are imposed on any author or copyright gations are imposed on any author or copyright

THERE IS NO WARRANTY FOR THE PRO
GRAM, TO THE EXTENT PERMITTED BY APSTATABLE IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PARRANTY OF PROGRAM KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WIT PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC SARY SERVICING, REPAIR OR CORRECTION
16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLIWILL ANY COPYRIGHT HOLDER, OR ANY
OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE
BE LIABLE TO YOU FOR DAMAGES CLUDING ANY GENERAL, SPECIAL, INCIDEN
TAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIM-
ITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE
OF THE PROGRAM TO OPERATE WITH ANY OR OTHER PARTY HAS BEEN ADVISED OF terpretation of Sections 15 and 16 .

If the disclaimer of warranty and limitation of lia
bility provided above cannot be given local legal ef
apply local law that most closely approximates an with the Program, unless a warranty or assumption
of liability accompanies a copy of the Program in

END OF TERMS AND CONDITIONS H
If you develop a new program, and you want it be of the greatest possible use to the public, the
best way to achieve this is to make it free software which everyone can redistribute and change under terms.

To do so, attach the following notices to the pro-
gram. It is safest to attach them to the start of each source file to most effectively state the exclu-
sion of warranty; and each file should have at least the "copyright", line and a pointer to where the full
notice is found.
<one line to give the program's name and a brief
idea of what it does.> Copyright (C) <year>
<name of author>
This program is free software: you can redistribute t and/or modify it under the terms of the GNU
General Public License as published by the Free General Public License as published by the Free
Software Foundation, either version 3 of the Li-

This program is distributed in the hope that
t will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
AERCHANTABILITY or FITNESS FOR A PARMERCHANTABILITY or FITNESS FOR A PARicense for more details.

You should have received a copy of the GNU General Public License along with this program. If not,
see http://www.gnu.org/licenses/.

Also add information on how to contact you by elec-
tronic and paper mail. If the program does terminal interaction, make it output a short notice like this when it starts in an
interactive mode: <program> Copyright (C) <year> <name of au-
thor This program comes with ABSOLUTELY
NO WARRANTY; for details type 'show w'. This is ree software, and you are welcome to redistribute it The hypothetical commands 'show w' and 'show c' should show the appropriate parts of the General
Public License. Of course, your program's com-
mands might be different; for a GUI interface, you You should also get your employer (if you work as a programmer) or school, if any, to sign a
copyright disclaimer" for the program, if necessary. For more information on this, and
how to apply and follow the GNU GPL, see
http://www.gnu.org/licenses/. The GNU General Public License does not permit incorporating your program into proprietary pro-
grams. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with the library. If this is Public License instead of this License. But first,
please read http://www.gnu.org/philosophy/why-not-lgpl.html

20.2 GNU Free Documentation License

Copyright © 2000, 2001, 2002, 2007, 2008 Free Soft

Everyone is permitted to copy and distribute verba tim copies of this license document, but changing The purpose of this License is to make a manual,
textbook, or other functional and useful document free in the sense of freedom: to assure everyone with or without modifying it, either commercially serves for the author and publisher a way to get
credit for their work, while not being considered This License is a kind of "copyleft", which means selves be free in the same sense. It complements
the GNU General Public License, which is a copy-
left license designed for free software. We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for any tex-
tual work, regardless of subject matter or whether tual work, regardless of subject matter or whether
it is published as a printed book. We recommend his License principally for works whose purpose is
nstruction or reference. 1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work
in any medium, that contains a notice placed by the in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in dura-
tion, to use that work under the conditions stated herein. The "Document", below, refers to any such
manual or work. Any member of the public is a li censee, and is addressed as "you". You accept the
license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A "Modified Version" of the Document means any
work containing the Document or a portion of it, eiwork containing the Document or a portion of it, ei-
ther copied verbatim, or with modifications and/or

A "Secondary Section" is a named appendix or a
front-matter section of the Document that deals ex clusively with the relationship of the publishers or
authors of the Document to the Document's overall
subject (or to related matters) and contains noth-
ing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not ex-
plain any mathematics.) The relationship could be a matter of historical connection with the subject
or with related matters, or of legal, commercial,
philosophical, ethical or political position regardphilosoph
ing them

The "Invariant Sections" are certain Secondary Sec The Invariant Sections are certain Secondary Sec
tions whose titles are designated, as being those o
Invariant Sections, in the notice that says that the Invariant Sections, in the notice that says that the
Document is released under this License. If a sec tion does not fit the above definition of Secondary The Document may contain zero Invariant Sections
If the Document does not identify any Invariant
Sections then there are none. The "Cover Texts" are certain short passages of text
that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text
may be at most 5 words, and a Back-Cover Text
may be at most 25 words. may be at most 25 words.

A "Transparent" copy of the Document means a whose specification is available to the general pub
lic, that is suitable for revising the doun straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely available drawing ed itor, and that is suitable for input to text format
ters or for automatic translation to a variety of for mats suitable for input to text formatters. A cop. markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is no
Transparent if used for any substantial amount of text. A
"Opaque"

Examples of suitable formats for Transparent copies include plain ASCII without markup, Tex
info input format, LaTeX input format, SGML or conforming simple HTML signed for human modification. Examples of transsigned for human modification. Examples of trans-
parent image formats include PNG, XCF and JPG
Opaque formats include proprietary formats that Opaque formats include proprietary formats that
can be read and edited only by proprietary word processors, SGML or XML for which the DTD processors, SGML or XML for which the DTD
and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or

PDF produced purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works in
formats which do not have any title page as such, formats which do not have any title page as such,
"Title Page" means the text near the most promi-
nent appearance of the work's title, preceding the nent appearance of the work's title, preceding the
beginning of the body of the text.

The "publisher" means any person or entity that
distributes copies of the Document to the public.
A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below,
such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the 'Title means that it remains a section "Entitled XYZ" ac-

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disin this License, but only as regards disclaiming warDisclaimers Disclaimers may have is void and has no effect on
the meaning of this License. 2. VERBATIM COPY-

You may copy and distribute the Document in any
medium, either commercially or noncommercially, medium, either commercially or noncommercially,
provided that this License, the copyright notices,
and the license notice saying this License applies to and the license notice saying this License applies to
the Document are reproduced in all copies, and that the Document are reproduced in all copies, and that
you add no other conditions whatsoever to those of this License. You may not use technic furth suresing of the copies you make or distribute. However, you may accept compensation in exchange for
copies. If you distribute a large enough number of
copies you must also follow the conditions in sec-

You may also lend copies, under the same condi-
tions stated above, and you may publicly display
tions stated above, and you may publicly display
copies. 3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the Doc-
ument, numbering more than 100, and the Doc-
ument's license notice requires Cover Texts, you
must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts Texts on the front cover, and Back-Cover Texts
on the back cover. Both covers must also clearly and legibly identify you as the publisher of these
and
copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers
in addition. Copying with changes limited to the Covers, as long as they preserve the title of the Doc-
ument and satisfy these conditions, can be treated
as verbatim copying in other respects. If the required texts for either cover are too volu-
minous to fit legibly, you should put the first ones minous to fit legibly, you should put the first ones
isted (as many as fit reasonably) on the actual
cover, and continue the rest onto adjacent pages. If you publish or distribute Opaque copies of the ther include a machine-readable Transparent copy from which the general network-using public has protocols a complete Transparent copy of the Document, free of added material. If you use the lat-
ter option, you must take reasonably prudent steps, ter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will at least one year after the last time you distribute an Opaque copy (directly or through yo
retailers) of that edition to the public.

It is requested, but not required, that you con-
tact the authors of the Document well before redis-
tributing any large number of copies, to give them tact the authors of the Document well before redis-
tributing any large number of copies, to give them
a chance to provide you with an updated version of chance to provide you with an updat
he Document. 4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2
and 3 above, provided that you release the Modified Version under precisely this License, with the
Modified Version filling the role of the Document, hus licensing distribution and modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modi-
fied Version: A. Use in the Title Page (and on the covers, if and from those of previous versions (which should if there were any, be listed in the History section
of the Document). You may use the same title as

Page, as authors, one or more persons or entities
responsible for authorship of the modifications in responsible for authorship of the modifications in
the Modified Version, together with at least five of the principal authors of the Document (all of its
principal authors, if it has fewer than five), unless C. State Modified Version, as the publisher. * D. Preserve
all the copyright notices of the Document. *E. Add all the copyright notices of the Document. *E. Add tions adjacent to the other copyright notices. ${ }^{*}$ F license notice giving the public permission to use
the Modified Version under the terms of this Liense, in the form shown in the Addendum below. G. Preserve in that license notice the full lists of In-
variant Sections and required Cover Texts given in dariant Sections and required Cover Texts given in
the Document's license notice. ${ }^{*} \mathrm{H}$. Include an unal tered copy of this License. * I. Preserve the section
Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors and publisher of the Modified Version as given on
the Title Page. If there is no section Entitled "His-
tory" in the Document create the Title Page. If there is no section Entitled "His-
tory" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous
sentence. * J. Preserve the network location, if any given in the Document for public access to a Trans parent copy of the Document, and likewise the net-
work locations given in the Document for previous versions it was based on. These may be placed in
the "History" section. You may omit a network lothe "History" section. You may omit a network loyears before the Document itself, or if the original publisher of the version it refers to gives permission,
*K. For any section Entitled "Acknowledgements" * K. For any section Entitled "Acknowledgements"
or "Dedications", Preserve the Title of the section, or "Dedications", Preserve the Title of the section,
and preserve in the section all the substance and and preserve in the section all the substance and and/or dedications given therein. * L. Preserve all
the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section
titles. * M. Delete any section Entitled "Endorsements". Such a section may not be included in the
Modified Version. * N. Do not retitle any existing ection to be Entitled Endorsements" or to conflict in title with any Invariant
any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Document, you may at your option designate some or all of these sections as invariant. To do this, add
their titles to the list of Invariant Sections in the their titles to the list of Invariant Sections in the be distinct from any other section titles.

You may add a section Entitled "Endorsements",
provided it contains nothing but endorsements of your Modified Version by various parties-for ex-
ample, statements of peer review or that the text ample, statements of peer review or that the text
has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a
Front-Cover Text, and a passage of up to 25 words Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may Front-Cover Text and one of Back-Cover Text may
be added by (or through arrangements made by)
any one entity. If the Document already includes be added by (or through arrangements made by)
any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the same entity
you are acting on behalf of, you may not add an-
permission from the previous publisher that adde
The author(s) and publisher(s) of the Document do not by this License give permission to use thei
names for publicity for or to assert or imply en
namer ING DOCUMENTS

You may combine the Document with other docu ments released under this License, under the terms
defined in section 4 above for modified versions provided that you include in the combination al of the Invariant Sections of all of the original doc Sections unmodified, and list them all as Invariant Sections of your combined work in its license no-
tice, and that you preserve all their Warranty Dis-
claimers tice, an
claimer

The combined work need only contain one copy o this License, and multiple identical Invariant Sec tions may be replaced with a single copy. If there
are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in paren-
theses, the name of the original author or publisher of that section if known, or else a unique number
Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; like
wise combine any sections Entitled "Acknowledge ments", and any sections Entitled "Dedications" You must delete all sections Entitled "Endo
ments". 6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this Li cense in the various documents with a single cop that is included in the collection, provided that yo of each of the documents in all other respects.

You may extract a single document from such a col
lection, and distribute it individually under this Li lection, and distribute it individually under this Li into the extracted document, and follow this Li ing of that document. 7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivative with other separate and independent documents or medium, is called an "aggregate" if the copyright re sulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which ar
not themselves derivative works of the Document. If the Cover Text requirement of section 3 is appli
cable to these copies of the Document, then if the
Document is less than one half of the entire aggre Document is less than one half of the entire aggre gate, the Document's Cover Texts may be placed aggregate, or the electronic equivalent of covers
if the Document is in electronic form. Otherwise they must appear on printed covers that bracket
the whole aggregate. 8. TRANSLATION

20.3 GNU Lesser General Public License

GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright © 2007 Free Software Foundation, Inc http://fsf.org/

Everyone is permitted to copy and distribute verbait is not allowed

This version of the GNU Lesser General Public License incorporates the terms and conditions of ver-
sion 3 of the GNU General Public License, supple sion 3 of the GNU General Public License, supplemented by the additional
0 . Additional Definitions.

As used herein, "this License" refers to version 3 of the GNU Lesser General Public License, and the Public License.

The Library" refers to a covered work governed by this License, other than an Application or a Com-

An "Application" is any work that makes use of an nterface provided by the Library, but which is not
otherwise based on the Library. Defining a subclass of a class defined by the Library is deemed a mode
of using an interface provided by the Library.

A "Combined Work" is a work produced by combining or linking an Application with the Library The particular version of the Library with which
the Combined Work was made is also called the
"Ling

The "Minimal Corresponding Source" for a ComThe "Minimal Corresponding Source" for a Comthe Combined Work, excluding any source code for
portions of the Combined Work that, considered in portions of the Combined Work that, considered in
isolation, are based on the Application, and not on isolation, are based
the Linked Version

The "Corresponding Application Code" for a Com bined Work means the object code and/or source utility programs needed for reproducing the Com bined Work from the Application, but excluding the System Libraries of the Combined W
tion to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License without being bound by sec-
tion 3 of the GNU GPL. 2. Conveying Modified
Versions

If you modify a copy of the Library, and, in your
modifications, a facility refers to a function or data modifications, a facility refers to a function or data cility (other than as an argument passed when the facility is invoked), then you may convey a copy of

* a) under this License, provided that you make good faith effort to ensure that, in the event an Ap plication does not supply the function or data, th of its purpose remains meaningful, or $*$ b) under
the GNU GPL, with none of the additional permissions of this License applicable to that copy.

3. Object Code Incorporating Material from Li-
brary Header Files.

The object code form of an Application may incorporate material from a header file that is part of porate material from a header file that is part of
the Library. You may convey such object code un-
der terms of your choice, provided that, if the incorporated material is not limited to numerical pa rameters, data structure layouts and accessors, or
small macros, inline functions and templates (ten or fewer lines in length), you do both of the following: * a) Give prominent notice with each copy of the the Library and its use are covered by this License.

* b) Accompany the object code with a copy of the

4. Combined Works
you may convey a Combined wor under terms your choice that, taken together, effectively do no contained in the Combined Work and reverse en-
gineering for debugging such modifications, if you also do each of the following:
a) Give prominent notice with each copy of the
Combined Work that the Library is used in it and Combined Work that the Library is used in it and that the Library and its use are covered Work with a
cense. ${ }^{*}$ b) Accompany the Combined Work copy of the GNU Combined Work that displays copyright notices during execution, include the copyright notice for the Library among these notices, as well as a ref-
erence directing the user to the copies of the GNU
GPL and this license document $* d$ d) Do ne of the following: o 0) Convey the Minimal Correspondin Source und the terms of this License, and the Cor responding Application Code in a form suitable for or relink the Application with a modified versio or relink the Application with a modified versio bined Work, in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source o 1) Use a suitable shared Mbrary mechanism fo linking with the Library. A suitable mechanism
is one that (a) uses at run time a copy of the Library already present on the user's computer sys
tem, and (b) will operate properly with a modified version of the Library that is interface-compatible with the Linked Version. ${ }^{*}$ e) Provide Installation
Information, but only if you would otherwise be re Information, but only if you would otherwise be re
quired to provide such information under section 6 of the GNU GPL, and only to the extent that such information is necessary to install and execute a modified version of the Combined Work produce by recombining or relinking the Application with use option 4do, the Installation Information must accompany the Minimal Corresponding Source and 4d1, you must provide the Installation Information in the manner specified by section 6 of the GNU

5. Combined Libraries

You may place library facilities that are a work
ased on the Library side by side in a single library ogether with other library facilities that are not Applications and are not covered by this License,
and convey such a combined library under terms of and convey such a combined library under te
a) Accompany the combined library with a copy
of the same work based on the Library, uncombined ith any other library facilities, conveyed under the terms of this License. * b) Give prominent noto find the accompanying uncombined form of the .
6. Revised Ve

The Free Software Foundation may publish revised and/or new versions of the GNU Lesser General Public License from time to time. Such new versions will bee similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library as you received it specifies that
a certain numbered version of the GNU Lesser General Public License "or any later version" applies to
it, you have the option of following the terms and onditions either of that published version or of any朝 pecify a ver eral Public License, you may choose any version of
the GNU Lesser General Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide whether future versions of the
GNU Lesser General Public License shall apply, hat proxy's public statement of acceptance of any version is permanent authoriza
choose that version for the Library.

[^0]: 1 http://www.w3.org/Graphics/JPEG/itu-t81.pdf
 2 http://www.w3.org/Graphics/JPEG/jfif3.pdf
 3 http://www.jpeg.org/

[^1]: http://en.wikibooks.org/w/index.php?title=User:Adrignola http://en.wikibooks.org/w/index.php?title=User:Dirk_H\%C3\%BCnniger http://en.wikibooks.org/w/index.php?title=User:Gertbuschmann http://en.wikibooks.org/w/index.php?title=User:JamesCrook http://en.wikibooks.org/w/index.php?title=User:MisterSpike

[^2]: 6 Chapter 20 on page 105

